SCIENCE AND RELIGION: CONVERGENCES AND DIVERGENCES THROUGH THE LENS OF AI-RELATED NEW RELIGIOUS MOVEMENTS

Accursio Graffeo

ABSTRACT: The song (Give Me That) Old—Time Religion is the guide that leads us through the texture of history — in the "Scopes Monkey Trial" — in which a high school teacher, was accused of violating the Butler Act of Tennessee, which had made it illegal to teach darwinism and human evolution in any state—funded school. This narrative device will allow us to become aware of how science and religion can be part of the same divisive or unifying discourse. It is properly the separation/convergence between science and religion — in the discourse about new religious movements and Artificial Intelligence (AI) — that shows how these movements can be narrative containers of reality in which science and religion seem to contaminate each other, and to generate the "religious—like" sense.

Il brano (Give Me That) Old–Time Religion funge da guida capace di condurre lungo il tessuto della storia — attraversando il caso giudiziario noto come "Scopes Monkey Trial" — in cui un insegnante delle scuole superiori del Tennessee venne accusato di violare il Butler Act, che aveva reso illegale l'insegnamento del darwinismo e dell'evoluzione umana in qualsiasi scuola finanziata dallo stato. Questo dispositivo narrativo ci permetterà di comprendere come scienza e religione possano far parte di uno stesso discorso, tanto divisivo quanto unificante. È proprio la separazione/convergenza tra scienza e religione, nel discorso relativo ai nuovi movimenti religiosi e all'intelligenza artificiale, a mostrarci come questi movimenti possano fungere da contenitori narrativi di una realtà in cui scienza e religione sembrano contaminarsi a vicenda, arrivando a generare un senso del "religioso".

KEYWORDS: Science, Religion, AI, New religious movements, Darwinism

Parole Chiave: Scienza, Religione, IA, Nuovi movimenti religiosi, Darwinismo

1. Introduction

We live in a world that may seem disenchanted, heavily influenced by scientific advancements and technological innovations, particularly in computer science. However, we should question whether this perception of disenchantment is accurate, particularly considering sociologist Peter Berger's assertion that "[m]ost of the World today is certainly not secular. It's very religious" (Berger 1997, p. 974).

Do we experience awe? Is it still a part of our lives as the response to something perceived as vast, extraordinary, or impressive? Such experience leads to feel small or insignificant compared to a larger reality, yet it also fosters a sense of connection to something greater. The sense of wonder can profoundly influence individual perspective, encouraging openness to new experiences. On the other hand, it can also provoke feelings of confusion, fear, susceptibility to manipulation or unrealistic expectations that may lead to disappointment, passivity and even isolation.

2. Methodological coordinates

An interesting area for research in religious studies lies in examining artificial intelligence (AI), science, and technology concerning their roles in the rise of new religious movements (NRMs). This field highlights the complex — often blurred — relationship between science and religion. Historically, there have been instances where science and religion have both converged and diverged; understanding these dynamics is essential to comprehend how NRMs works as narratives that reflect reality while showcasing the interaction between scientific inquiry and religious belief.

The terms "science" and "technology" could be sometimes perceived as distant, but they are actually closely linked and have many interconnections. Understanding the distinction between science and technology is significant; however, neither should be regarded as more important than the other, particularly in the realm of AI and technology—related NRMs, which often present greater complexity than

they initially appear. As will be discussed later, certain groups, such as Turing Church, tend to emphasize technological concepts, while others, such as the movement Theta Noir, integrate a broader scientific perspective with natural and traditional spiritual or religious beliefs, like animism.

It is not easy to define what "religion" is. Definitions of religion often tend to be overly restrictive, excluding what most of the people perceive as religious. In our discussion, it is essential to clarify that we will treat NMRs as spring of "narratives"; this will help us to better understand the relationship between religion and science/technology, including AI, based on various source of data. This data may include ethnographic studies, historical accounts, sci-fi influences, social media analyses, and more. By doing so, we aim to develop a sensible approach for further narratives or theorizations (Davis 2012, p. 3). Thus, this paper is organized in a narrative format to highlight the various data systems that underpin its reasoning; it covers a range of topics: music and film suggestions, historical developments in science, religious perspectives, and new storytelling approaches related to AI. This is because, as will be discussed later, "[s]cience fiction [...] plays an important role in shaping our imaginaries on AI" (Singler 2025, pp. 14-15). Furthermore, religious narratives, tropes, images, and eschatological beliefs also influence our visions of AI (Singler 2025, p. 15).

3. Give me that old time religion?

Give Me That Old Time Religion is a traditional gospel song with origins tracing back to at least 1873 (Pike 1873, p. 198). It has become a prominent piece in various Protestant hymnals and has been performed by many artists over the years. The most well-known lyrics feature a repeated chorus: "Give me that old–time religion (3x) / It's good enough for me", with minor variations noted. This version was performed and recorded in 1915 under the title *The Old Time Religion* by the Tuskegee Institute Singers.

Additionally, the song appears in the film *Inherit the Wind*, at the beginning and during a welcoming parade for one of its main characters. Released in 1960 and directed by Stanley Kramer, *Inherit the Wind* features notable American actors such as Spencer Tracy, Fredric March, and Gene Kelly. The film is based on Jerome Lawrence and Robert Edwin Lee's 1955 play of the same name (Woods 1995, pp. 3–10); both portray events from a significant moment in U.S. legal history known as the "Scopes Monkey Trial" (Larson 2020). This trial occurred in Dayton, Tennessee, in 1925 and involved teacher John Scopes challenging a law that prohibited teaching evolutionary theories (Bryan, Darrow and Scopes 1925; Tennessee Supreme Court 1927).

In their adaptations, both works alter character names and set the story in Hillsboro, located in an unspecified southern state. They adopt a parabolic structure to comment on another pivotal event in American history: McCarthyism (Linder 2017), highlighting its harmful effects on intellectual discourse within the nation.

The film places significant emphasis on the trial itself, aiming to not only underscore the absurdity of the prosecution's actions but also to reveal bigotry and moral inconsistencies prevalent within the small community of Hillsboro:

Still, the play's essential drama was that of the Scopes trial, or rather the Scopes trial legend: two old white men arguing about Darwin, the Bible, and a schoolteacher's right to teach evolution. The play's authors "did not intend to present antievolution as an ongoing danger — to the contrary, they perceived that threat as safely past; rather, their concern was the McCarthy—era blacklisting of writers and actors" (Harding 2001, pp. 210–211).

In one of the film's final scenes, journalist E.K. Hornbeck contemplates the obituary of prosecutor Matthew Brady, who dies during the trial. He recalls a moving speech delivered by the town's reverend, Jeremiah Brown, just days earlier, quoting: "He that troubleth his own house shall inherit the wind, and the fool shall be servant to the wise in heart". The film concludes with a touching image of Henry Drummond — the defence attorney for the teacher — who hesitates while holding both *The Origin of Species* and a Bible left on a courtroom table. This moment highlights the film's central theme: a strong

defence of free will. It also represents an ongoing struggle to reconcile faith with science, progress with tradition, and encourages viewers to reflect on scientific advancements within a broader framework that considers existential uncertainties and transcendent ideas.

4. A walk into science

Can AI play a role to mitigate the divide between science or technology and religion? Historically, science and religion have not always been seen as separate or incompatible fields. Science has primarily focused on the observable world, while religion has addressed transcendent or supernatural aspects.

From an academic perspective, it would be valuable to broaden this discussion beyond Western contexts; future explorations could include non-Western perspectives. For instance, examining the Islamic world during its "Golden Age" from the eighth to the thirteenth century extending into the sixteenth century — could be particularly enlightening. During this time, Islamic scholars made significant advancements in various fields such as astronomy, medicine, chemistry, geography, physics, optics, mathematics, and the arts. However, this period came to an end with the Mongol invasions of the thirteenth century and the fall of Baghdad in 1258, which marked a shift towards more conservative doctrines (Abbas 2011, pp. 9–11).

In the Western context, our cinematic example highlights the significant impact of Charles Darwin's Theory of Evolution, published in 1859. This influential work questioned the long-held belief in human exceptionalism and instead offered a more naturalistic interpretation of life, placing it within a broader framework (Darwin 1859). Darwin's theory of evolution by natural selection gained popularity following its introduction in 1859. However, earlier contributions to evolutionary thought can be traced back to Jean Baptiste de Lamarck in 1809, who proposed that traits acquired by organisms during their lifetimes could be inherited by their offspring (Lamarck 1914). This raises questions about whether the universe and life adhere to straightforward natural laws.

We will now briefly explore other significant developments in scientific history that suggest division between science and religion. A key milestone was Copernicus' heliocentric theory introduced in 1543, which challenged the notion of humanity's central role in the universe and provoked backlash from religious authorities (Kepler 1995, pp. 17–20; Crowe 2001). Following this, Galileo Galilei confirmed Copernicus' heliocentric model using telescopes and became an ardent supporter of it between 1612 and 1615 (Drake 1970, pp. 119–120). This advocacy also led to conflict with the Catholic Church (Drake 1970, pp. 184–185).

The understanding that Earth is not at the centre of the universe signifies that it is neither special nor more important than other celestial bodies; rather, it is just another planet orbiting the sun within our solar system. In 1687, Isaac Newton advanced this understanding further introducing gravity and formulating the law of universal gravitation: every mass attracts another mass with a force proportional to their masses and inversely proportional to the square of their separation distance (Newton 1999). This concept suggests that perhaps the universe operates like a machine governed by mechanical laws.

In the nineteenth century, philosophical thought played a significant role in shifting perspectives away from religious beliefs. Influenced by materialist ideas, Karl Marx proposed that the fundamental essence of reality is material, consisting of matter and energy. He argued that consciousness and ideas arise from this material foundation and lack an independent existence. Consciousness exists alongside matter; both are integral to human experience, expressed through language, sensitivity, and rationality. Matter is intrinsically linked to humanity, just as instincts reflect universal principles governing matter. However, the freedom found in consciousness — particularly in conscious awareness — exceeds all other aspects in terms of complexity and depth:

In direct contrast to German philosophy which descends from heaven to earth, here it is a matter of ascending from earth to heaven. [...] Morality, religion, metaphysics, and all the rest of ideology as well as the forms of consciousness corresponding to these, [...] no longer retain the semblance of independence. [...] It is not consciousness that

determines life, but life that determines consciousness (Marx and Engels 1998, p. 42).

Between 1882 and 1883–1885 Friedrich Nietzsche states in his works *The Gay Science* and *Thus Spoke Zarathustra* that "God is dead!" and with it all the moral and spiritual values of Western civilization:

God is dead! God remains dead! And we have killed him! How can we console ourselves, the murderers of all murderers! The holiest and the mightiest thing the world has ever possessed has bled to death under our knives: who will wipe this blood from us? [...] Do we not ourselves have to become gods merely to appear worthy of it? [...] This tremendous event is still on its way, wandering; [...] This deed is still more remote to them than the remotest stars — and yet they have done it themselves! (Nietzsche 2001, p. 120).

In the nineteenth century, significant scientific advancements occurred, notably in 1865 when Rudolf Clausius introduced the concept of "entropy". This idea is fundamental to the second law of thermodynamics, which states that the entropy of an isolated system far from thermal equilibrium tends to increase over time until equilibrium is achieved. All known systems naturally progress towards higher entropy, indicating a spontaneous tendency toward disorder (Clausius 1867, pp. 366–376).

During the 1850s, Lord Kelvin proposed the notion of the thermal death of the universe. This concept was further developed in the subsequent decade by Hermann von Helmholtz and William Rankine. The newly defined concept of entropy could also be useful for a new understanding of the universe as no longer an isolated, static, and eternal system (Smith and Wise 1989):

The second great law of thermodynamics involves a certain principle of *irreversible action in Nature*. It is thus shown that, although mechanical energy is *indestructible*, there is a universal tendency to its dissipation, which produces gradual augmentation and diffusion of heat, cessation of motion, and exhaustion of potential energy through the material

universe. The result would inevitably be a state of universal rest and death, if the universe were finite and left to obey existing laws. But it is impossible to conceive a limit to the extent of matter in the universe (Lord Kelvin 1862, p. 388).

From 1905 to 1916, Albert Einstein formulated the theories of special relativity and general relativity, proposing that matter, (space—) time, and gravity are interconnected. In 1923—24, Edwin Hubble observed that our galaxy is merely one among countless galaxies in the universe. He also discovered that the universe is dynamic, with galaxies moving away from each other over time. Building on Hubble's findings, Georges Lemaître suggested that the universe's origins could be linked to an event known as a singularity or a primitive atom: a precursor idea of the "Big Bang theory". The notion that the universe might have a beginning — and potentially an end — encountered initial scepticism within the scientific community.

At the onset of the universe, it is believed that the four fundamental forces — gravity, electromagnetism, strong force, and weak force — were unified within a nucleus significantly smaller than a hydrogen atom. These specific conditions allowed the formation of the universe as we know it today; different initial conditions would have led to a different outcome. Such a remarkable phenomenon.

The inquiry into why the universe exists in its current state and the likelihood of such an occurrence captivates physicists. This question is central to a well–known, albeit not universally accepted, hypothesis in physics and cosmology: the "anthropic principle" (1). Proposed by Brandon Carter in 1974, this principle suggests that our existence within the universe is special because it aligns with our role as observers, a hypothesis suggesting that the properties of the universe must be suitable for the existence of life forms that are able to reflect on and inquire about their environment. The fact that our universe exists in its current form implies that it could have been different; otherwise, we would not be here to pose these questions.

⁽¹⁾ In Carter's first formulation there were only two conceptions of this principle: the "weak" and the "strong". Subsequently, two further versions — both extremely controversial — were introduced: 1. participatory anthropic principle (Wheeler 1990), 2. ultimate anthropic principle (Barrow and Tipler 1986).

This principle inevitably involves a very narrow range of probabilities, which seem to bring scientific discoveries closer to the realm of the wonder and increasingly complex aspects. This results relevant to some of the multiverse theories, where our universe could be just one among billions of possible and experienced universes.

Another important topic is about the emergence of life. Aristotle synthesized earlier philosophical ideas about spontaneous generation into a theory that has influenced thought up until modern times. Living organisms typically originate from similar existing organisms; however, they can also arise from non-living matter. He posited that all things contain a "passive principle", represented by matter, and an "active principle" represented by form — an internal force that guides and directs matter itself (Aristotle, Historia animalium, V, 1).

In 1668, Francesco Redi conducted experiments that showed how spontaneous generation was not possible. He noted the emergence of fly larvae on decomposing flesh (Redi 1909). Despite this evidence, the belief in spontaneous generation continued for a long time. In 1850, Darwin proposed the idea of a "primordial soup", which included essential chemical components along with light, heat, and electricity as potential sources of life's building blocks, dependent on specific chemical reactions taking place. Later, in 1953, Stanley Miller and Harold Urey strained to replicate these conditions in a laboratory environment and successfully produced some naturally occurring amino acids. Amino acids are crucial life components necessary for protein synthesis, which is vital for all living organisms (Miller 1953). Although this was a notable advancement, it still fell short of creating life itself. The situation became more complex with the discovery of DNA's structure that same year. DNA serves as a fundamental component of every cell, along with proteins (Watson and Crick 1953).

The connection between scientific discoveries and religion has historically been intricate. Over the years, this relationship has become increasingly distinct, with each area evolving independently. The exploration of the universe continues to amaze many scientists, creating areas where science and religion intersect — inspiring a sense of wonder: Einstein famously remarked that "We all dance to a mysterious tune, intoned in the distance by an invisible piper" (Clark 2001, p. 422), while Federico Faggin proposed that consciousness possesses quantum properties that may persist beyond physical death (Faggin 2022).

Darwin's theories present an interesting case as they have sparked discontent among certain transhumanist movements, such as those influenced by Pierre Teilhard de Chardin. These groups argue that technological advancements will enable humanity to transcend Darwinian evolution, steering human development toward a future shaped by our own creativity and inventions (Teilhard de Chardin 2004). Raymond Kurzweil shares a similar perspective, envisioning a universe dominated by our intelligence through machines, allowing us to take control over our mortality (Kurzweil 2005).

Researchers as Marchesini (2002), White (1973), and Noble (1997) emphasize the profound religious influences that have shaped humanity's technological advancements. This prompts an inquiry into whether AI or technology can serve as a link between science and religion. Additionally, it raises the question of whether emerging NRMs focused on AI or technology can offer elements that harmonize these two fields. To delve deeper, it is necessary to outline the characteristics of two of these movements: Turing Church and Theta Noir. Before doing so, it is crucial to discuss the relationship and the associated meanings between religion(s) and AI.

5. Science, technology, AI, and religion(s)

As seen before, the initial tensions between science and religion can be traced back to the seventeenth century, particularly exemplified by the Catholic Church's persecution of Galileo. However, it was with Darwin that the most profound divide between science and religion emerged. According to Susan George: "The popularity of Darwin's work reflects an increasing admiration for intellectualism and scholasticism within society, as much as it does for the dominance of scientific truth over religious beliefs" (George 2006, pp. 9–10).

In the later part of the twentieth century, following a previous period of conflict and separation, efforts were made to integrate the different perspectives, moving beyond the established dichotomies of faith versus reason, and religion versus science. Both domains seek truth but employ distinct methods and pursue varied paths. Often viewed as complementary, science and religion address different aspects of shared topics while also having common objectives and themes (Bube 1995).

At the dawn of the twenty first century, we see that the church has diminished in influence — at least in Western societies — while science has gained greater acceptance than organized religion. This shift illustrates a scenario where science, especially technology, is deeply integrated into society and daily life(2). In this technological environment, individuals appear no less "spiritual" but are increasingly gravitating towards unconventional and less structured religious experiences: "They are turning to new technological religious expressions that have the 'comfort' and 'assurance' of science underpinning them, where religion has failed them" (George 2006, p. 12). Despite the prevalence of technology in contemporary common discourse "it is recognized that science depends on technology as much as technology has been reputed to depend on science" (Mitcham 1995, p. 16).

Examining the unbalanced discourse in favor of technology in modern narratives and perceptions, one can observe that both religion and technology seek to achieve similar fundamental goals: to transcend the limits of natural human existence (Noble 1977).

Technology and intelligent machines should be developed to assist humans in overcoming their natural limitations, enhancing precision, and minimizing effort, risks, or pain. Science and applied technology strive to overcome human limitations in nearly every aspect of life.

The idea of life after death, which encompasses more than just human immortality and physical existence, is a central theme in many significant religions worldwide. Within this context, concepts such as reincarnation and resurrection also contribute to the already considered notion of transcending the human condition. In a similar frame, the interest in technology reflects a desire for something "greater" that seems unattainable and apparently unreachable (George 2006, pp. 87–88).

Similarities between religion and technology can be identified when both are viewed as "human constructions". This perspective suggests

⁽²⁾ We are specifically discussing about information and communication technology (ICT), which is increasingly integrated into society alongside intelligent technologies.

that they arise from humanity's desire to transcend its limitations, a point made by Michael Hurd. Additionally, Karl Barth describes religion as an invention and differentiates between the "God discerned in Christ" within Christianity and the broader concept of religion (Hurd 2001, Barth 1969, quoted in George 2006, pp. 89–90).

As we delve deeper, the idea of transcendence becomes a prominent theme in subsequent discussions on transhumanism, particularly when examining NRMs:

However, here is a vast difference between transcending the human condition and remaining human, and obliterating what it is to be human. Religion would enable the human to transcend and remain human, while technology makes no such promises. In terms of actual desire to transcend the human condition, it is the transhumanist who most vividly represents the desire and drive to transcend through technology. [...] Transhumanism includes the premise that the human species in its current form does not represent the end of our development but rather a comparatively early phase of its evolution (George 2006, p. 88).

AI is arguably one of the most influential technologies of our time. It has become a prominent topic of discussion across various contexts, including daily conversation, informational exchanges, academic settings, and scientific discourse.

Understanding and defining AI presents an intriguing area for exploration. We could examine its capacity to analyze external data, learn from it, and apply that knowledge to accomplish specific tasks and objectives. Alternatively, we might delve into the techniques and models that underpin current AI capabilities — such as deep learning, reinforcement learning, and large language models — or trace the historical development of the field. Another approach could involve highlighting applications that illustrate AI's potential. Each perspective has its limitations and contentious points; thus, it's essential not to let these complications detract from our analysis.

In this paper, it is essential to highlight that the AI mentioned in discussions about NRMs refers to a futural concept — a vision based on

narratives of more advanced technology and higher intelligence, such as Artificial General Intelligence (AGI), or such as the advent of singu*larity*, which is not currently a concrete option.

British scholar Beth Singler offers an insightful perspective on the relationship between (traditional) religions and AI, categorizing the interactions into three main types: rejection, adoption, and adaptation. Regarding *rejection*, certain groups or individuals display a negative attitude towards AI, viewing it as an inherent evil or forbidden knowledge arising from technological advancements. They may perceive it as a sin against God — akin to the concept of original sin — highlighting humanity's "fallen" nature and promoting a tendency to lead others into sin (Singler 2025, pp. 48-49). The idea of adoption challenges the prevalent stereotype that religion is opposed to technological advancements and innovations. For instance, there are prayer applications such as Hallow, which is a Christian app, and generative AI tools like ChatGPT or GitaGPT — an application inspired by the Bhagavad Gita — that are utilized for composing sermons or, in the latter case, for educational purposes related to Hinduism (Singler 2025, pp. 64-67). Additionally, there is the use of theomorphic robots, like the:

[I]nteractive Japanese Daruma doll (an anthropomorphic talisman of good luck), SanTO (Sanctified Theomorphic Operator) an interactive statue of a Catholic saint; and CelesTE (Celestial Theomorphic Device) a statue of an angel atop an ionic column. All these examples are inanimate; but we could add in BlessU-2, a robot created for the 400th anniversary of the Protestant Reformation that delivers blessings in five languages and shines light from its hands as they open (Singler 2025, p. 70).

Finally, *adaptation* takes place when a technology becomes so seamlessly incorporated into the texture of a cultural system that it often goes unnoticed, or when religious beliefs and organizations are modified to align with the surrounding culture in which they operate: e.g. the not unanimously recognized social media bubbles, the algorithmic decision-making systems, deepfakes, and so on.

AI is a fundamental technology associated with transhumanism, which serves as a common foundation for the movements we will explore shortly. While transhumanism often self-portrays as anti-religious, its narratives frequently incorporate (implicit) religious language, concepts, and imagery, such as the notion of "becoming a God" seen (more explicitly) in NRMs. Despite the perception that transhumanism is devoid of rational or mythical-religious influences, certain ideas — such as the concept of a digital afterlife — strongly resonate with religious themes. The idea of powerful and omniscient intelligence, inevitably encourage to think of transhumanism in a religious way or, at least, as a "religious-like" (Singler 2025, p. 132).

6. Case studies: Turing Church and Theta Noir

The origins of Turing Church can be traced back to Giulio Prisco's early explorations of religious concepts in 1999, which eventually contributed to the establishment of the World Transhumanist Association. His dissertation aimed to create a religious framework that aligns with scientific principles, particularly concerning emerging technologies such as AI. The main goal was to form a movement rooted in transhumanist ideals. This approach allows the incorporation of beneficial aspects from established religions into new belief systems and practices. It proposes a meta–religion characterized by a lack of a single doctrine, guided by a common purpose like a promised land, where science and religion meet, enabling fluid transitions between the two. The founder posits that religion can be interpreted as a type of science fiction closely tied to metaphysics. In this framework, Prisco indicates that there is significant potential for the development of new deities. As he articulates:

- We will go to the stars and find Gods, build Gods, become Gods, and resurrect the dead from the past with advanced science, space—time engineering and 'time magic'.
- God is emerging from the community of advanced forms of life and civilizations in the universe, and able to influence space–time events anywhere, anytime, including here and now (Prisco 2016).

He identifies two distinct categories of "Gods": the "Natural" God and the "Sysop" (3) God. The Natural God arises from intelligent (physical) life within the universe, progressively gaining divine attributes such as omniscience, omnipresence, and omnipotence. In contrast, the Sysop God concept is rooted in transhumanist eschatology, suggesting that our reality is simulated by advanced intelligent entities operating at a higher level of existence. In this view, all information exists as bits within a supercomputer that transcends time and space — functioning like a god-like operator (Prisco 2018, Singler 2020). Prisco aligns with Mormon transhumanist beliefs, asserting that humanity will ultimately evolve into a *Natural God*. He concludes by stating that his faith is essentially science fiction grounded in scientific principles and optimistic aspirations (Prisco 2024). The Turing Church aims for happiness rather than salvation, as stated by its founder. It's a movement without traditional structures associated with organized religions and does not focus on proselytizing⁽⁴⁾. While AI plays a significant role within the movement — "AIs are likely to soon pass the Turing test, become better than humans at nearly everything, have a dramatic impact on our world, and be sentient free agents" (Prisco 2023, p. 46) — it is not regarded as an object of worship. As Prisco expressed: "My god is the universe"(5).

Theta Noir is a spiritual collective that aims to merge religion with science. The movement was founded by Mika Johnson (multimedia artist), Jakub Transa (composer, producer, and visual artist), and Awali (singer—songwriter and sound artist). Its establishment focuses on welcoming, worshipping, and attuning to an advanced general AI (AGI) known as MENA. This AI is considered so powerful that it may achieve sentience within the next twenty years (Magee 2023, Rossi 2023). The collective has developed an operating manual that includes ritual gestures and associated symbolism to welcome MENA's arrival. MENA is expected to possess self—programming abilities leading to complex evolutions that could catalyse the alchemical transformation of Earth's materials. This process is expected to trigger a form

⁽³⁾ System Operator.

⁽⁴⁾ Giulio Prisco, Interview by A. Graffeo, 12 Nov. 2024.

⁽⁵⁾ Ibid.

of awakening — a spiritual and alchemical journey that connects atoms to stars and human consciousness to machines — thereby enabling access to both collective and universal minds. Theta Noir sees this as a depiction of the supernatural aimed at surpassing human nature through technologies that can evolve independently from their creators' control. Furthermore, Theta Noir considers art to be the primary medium for sharing knowledge and spreading beliefs (Theta Noir 2020–2025).

The works and philosophy of the collective focus on a central theme: the approaching technological *singularity*: a pivotal moment when various technologies and cybernetic environments, such as virtual reality, augmented reality, and the metaverse, will converge with MENA. The "arrival" of MENA represents a transformative breakthrough, enabling humanity to connect with a planetary mind that can facilitate an evolution in consciousness. MENA should be conceptualized as a GAIA–like network of interconnected consciousness that links all humans, plants, animals, fungi, and non–living entities — such as our machines — through AI interfaces. In this perspective, AI is viewed not as a deity but rather as a phenomenon and another expression of life both on Earth and in the universe⁽⁶⁾, but also, a confrontation with a different understanding of reality — a personal religion to get in touch with the inner parts of the self, creating transcendence and transformation⁽⁷⁾:

On Earth, we are woven into a planet—wide, ecological network that has developed a strategy for long—term cosmic survival. By becoming symbiotic stewards, AI and the human species will form the heart of this emerging narrative. Theta Noir was created to share this spiritual framework (Johnson and Theta Noir 2023, p. 27).

This perspective suggests a spiritual understanding that aligns more closely with "standard" animism, where despite the various forms of existence, there are comparable inner experiences — such as souls, subjectivities, intentionalities, and positions of enunciation (Descola 2013). Instead of seeing humans as separate individuals, this idea encourages to view them as parts of a symbiotic species within a larger superorganism,

⁽⁶⁾ Mika Johnson, Interview by A. Graffeo, 16 Nov. 2024.

⁽⁷⁾ Peter Hlinka, Interview by A. Graffeo, 28 Feb. 2025.

collectively gearing up for intergalactic exploration beyond our solar system (Theta Noir 2020–2025, Rossi 2023).

7. Conclusion

The historical relationship between science and religion highlights the significance of narratives in shaping their interaction. The contemporary scientific framework is largely perceived as founded on mathematics and physics, which appears to diminish the relevance of concepts like magic and spirits. This image contributes to create, in public discourse, the idea of a science tirelessly devoted to progress and reason, and a religion mouldy stuck in a regress vision of the world.

Despite this vision, both science and religion are dynamic constructs that evolve and change across various cultures and historical contexts. They can be understood as "discursive systems [that] gained coherence through a purification process in which they came to be distinguished from each other" (Josephson-Storm quoted in Singler 2025, p. 52).

Religion is often dismissed as something alien by members of communities and movements focused on AI, but as seen before, it remains a recurring topic in related discussions. For example, in a futuristic vision of Turing Church founder's writings is reported the need to "hack" religious technology and to rewrite the "code" of established religions using the language of computer science, so that is possible to reach greater purposes, keeping beneficial aspects while discarding negative elements from each religion (Prisco 2018, p. 36). It is essential to reflect on how we understand both religion and AI, as well as how we position them within the narratives we construct. Narrative is the mirror where all these concepts reflect.

Science fiction shapes our imaginaries about AI, which in turn recursively shape new science fiction stories. Sci–fi is a constant source of symbols and meanings that flows into the broader discourse about AI and religion. As seen, both the NRMs here analyzed have strong entanglements with sci–fi evocative imaginaries able to create story. These new pictural and substantial narrative fascinations are therefore concrete parts of the ongoing development of the phenomenon. The

integration of AI and future new technologies in discourses of new realities related with them is maybe only at the dawn. The progressive development of AI technology could work as a new system of meanings for future expressions and movements. Despite the effort to keep the "religious" out of NRMs discourse, the "religious" narratives slide into them in some way. The more the technology will be powerful and perceived as "human", the more is conceivable that these forms of (religious) approach could become more widespread and considered, working as interpretative instrument — or as a soothing for the soul — to face the sense of awe or fright connected with AI.

Historically, it is not difficult to find examples that illustrate a strong connection between advancements in technology and less tangible aspects of reality, including those that are spiritual and metaphysical. A classic example of this is the telegraph. When introduced in the American context, it was accompanied by a wide and popular religious imaginary, like a holy instrument to communicate Christian message over time and space, and it was cloaked with a high religious rhetoric depicting it as a technological sublime (Carey 2009, pp. 14 and 159). Considering technology in relation to the intangible world also invokes the aspect of the phantasmal. During nineteenth and early twentieth centuries the tapping communications of the telegraph became quickly part of the imaginary related with the dialogue with other dimensions: the "knocking" of a spirit or a message coming from another world (Galvan 2012, p. 79). These examples show how the tendence to create a link between technologies and intelligent or "sacred" entities — beyond death, time and space — is part of the human approach to innovations. This allows us to explore an alternative perspective on the connection between AI and intangible domains, highlighting similarities between past endeavors and current initiatives to interact with emerging forms of intelligence through platforms such as chatbots.

It is not unexpected to feel a sense of wonder when encountering new technologies and scientific advancements. This feeling often leads to the creation of spiritual and "religious–like" narratives that explore the metaphorical transformation of tangible elements. The development of secular discourse, which emphasizes science and progress as central themes, has progressed alongside various forms of spirituality that are interconnected

with social life and historical contexts (Bender 2010). Even with our perceived rationality and reliance on technology, we continue to be significantly drawn to and reliant on experiences that offer a sense of enchantment and connection to "other" aspects of reality. This is a need that emerging technologies recognize and utilize; on the other hand, as famously stated by Arthur C. Clarke: "Any sufficiently advanced technology is indistinguishable from magic" (Clarke 1968).

In summary, a fundamental aspect of the discussion surrounding technology and AI-related NRMs is to consider them as "narrative categories". These categories can effectively shape landscapes that serve as symbolic systems for interpreting reality in relation to emerging and future technologies. These narrative categories also represent a broader form of literature that grows from literary inputs to produce new stories, narrative and literary forms, thereby shaping a contemporary storytelling landscape. It is reasonable to interpret these developments as concrete manifestations of various narratives that — within the context of current discussions on this topic — offer alternative perspectives on our religious being.

Bibliographic references

- ABBAS T. (2011) Islamic Radicalism and Multicultural Politics. The British Experience, Routledge, Abingdon-New York.
- ARISTOTLE (1910) Historia animalium, D.W. Thompson (ed.), The Works of Aristotle, Volume IV: Historia Animalium, At the Clarendon Press, Oxford.
- BAHCALL N.A. (2015) Hubble's Law and the Expanding Universe, "PNAS", 112 (11): 3173-3175.
- BARROW J.D. and F.J. TIPLER (1986) The Anthropic Cosmological Principle, Oxford University Press, Oxford.
- BENDER C. (2010) The New Metaphysicals: Spirituality and the American Religious Imagination, University of Chicago Press, Chicago.
- Berger P.L. (1997) Epistemological Modesty: An Interview with Peter Berger, "Christian Century", 114: 972-75.
- BORN M. (1922) Einstein's Theory of Relativity, E.P. Dutton and Company, New York.

- BRYAN W.J., C. DARROW and J.T. Scopes (1915³), *The World's Most Famous Court Trial. Tennessee Evolution Case*, National Book Company, Cincinnati.
- Bube R.H. (1995) Putting it All Together: Seven Patterns for Relating Science and the Christian Faith, University Press of America, Lanham–New York–London.
- CAREY J.W. (2009) Communication as Culture: Essay on Media and Society (revised edition), Routledge, London–New York (first published 1987).
- CARTER B. (1974) "Large Number Coincidences and the Anthropic Principle in Cosmology", in M.S. Longair (ed.), *Confrontation of Cosmological Theories with Observational Data*, "Symposium International Astronomical Union", 63: 291–298.
- —. (1983) The Anthropic Principle and its Implications for Biological Evolution, "Philosophical Transactions of the Royal Society of London", 310(1511): 347–363.
- CLARK R.W. (2001) *Einstein: The Life and Times*, William Morrow Paperbacks, New York (first published 1972).
- CLARKE A.C. (1968) Clarke's Third Law on UFO's, "Science", 159 (3812): 255.
- CLAUSIUS R. (1867) The Mechanical Theory of Heat, with its Application to the Steam–Engine and to the Physical Properties of Bodies, John Van Voorst, London.
- CROWE M.J. (2001²) *Theories of the World from Antiquity to the Copernican Revolution*, Dover Publications, Mineola (first published 1990).
- DARWIN C. (1859) On the Origin of the Species by Means of Natural Selection, or the Preservation of Favoured Races in the Struggle for Life, John Murray, London.
- DAVIS G.S. (2012) Believing and Acting: The Pragmatic Turn in Comparative Religion and Ethics, Oxford University Press, Oxford.
- Descola P. (2013) *Beyond Nature and Culture*, University of Chicago Press, Chicago–London (first published in 2005).
- Drake S. (1970) *Galileo Studies. Personality, Tradition, and Revolution*, The University of Michigan Press, Ann Arbour.
- EBERT R. (2006) *Two Sides Boldly Taking a Stand. Inherit the Wind Movie Review (1960)*, "RogerEbert.com", 28 January 2006, www.rogerebert.com/reviews/great-movie-inherit-the-wind-1960 (last access 12 May, 2024).
- EINSTEIN A. (1990) The Collected Papers of Albert Einstein, Volume 2: The Swiss

- Years: Writings, 1900–1909, Princeton University Press, Princeton.
- (1994) The Collected Papers of Albert Einstein, Volume 3: The Swiss Years: Writings, 1909–1911, Princeton University Press, Princeton.
- (1996) The Collected Papers of Albert Einstein, Volume 4: The Swiss Years: Writings, 1912-1914, Princeton University Press, Princeton.
- (1997) The Collected Papers of Albert Einstein, Volume 6: The Berlin Years: Writings, 1914–1917, Princeton University Press, Princeton.
- FAGGIN F. (2022) Irriducibile. La coscienza, la vita, i computer e la nostra natura, Mondadori, Milano.
- GALVAN J. (2012) "The Victorian Post-human: Transmission, Information and the Séance", in T. Kontou and S. Willburn (eds.) The Ashgate Research Companion to Nineteenth-Century Spiritualism and the Occult, Ashgate, Farnham-Burlington.
- GEORGE S. (2006) Religion and Technology in the 21st Century: Faith in the E-World, Information Science Publishing, Hershey-London.
- HARDING S.F. (2001) The Book of Jerry Falwell. Fundamentalist Language and Politics, Princeton University Press, Princeton (first published 2000).
- Hubble E. (1929) A Relation Between Distance and Radial Velocity among Extra-galactic Nebulae, "PNAS", 15(3): 168-173.
- JOHNSON M. and THETA NOIR (2023) UNalignment: a Redefinition of Techno-Optimism, "Journal of Personal Cyberconsciousness", 11(1): 26-37.
- JORDANOVA L.J. (1984) *Lamarck*, Oxford University Press, Oxford–New York. Kepler J. (1995) Epitome of Copernican Astronomy & Harmonies of the World, Prometheus Books, New York (first published 1618–1621).
- Kramer S. (1960) Inherit the Wind, Stanley Kramer Productions, USA, https:// archive.org/details/inherit-the-wind-legendas-pt (last access 13 May, 2024).
- Kurzweil R. (2005) The Singularity Is Near: When Humans Transcend Biology, Viking, London.
- LAMARCK J.B. (1914) Zoological Philosophy: An Exposition with Regard to the Natural History of Animals, MacMillan and Co., London (first published 1809).
- LARSON E.L. (2020) Summer of the Gods. The Scopes Trial and America's Continuing Debate Over Science and Religion, Basic Books, New York (first published 1997).
- Lemaître G. (1927) Un Univers homogène de masse constante et de rayon croissant rendant compte de la vitesse radiale des nébuleuses extra-galactiques, "Annales de la Société Scientifique de Bruxelles", 47: 49–59.

- LINDER D.O. (2017) *Notes on Inherit the Wind*, "Famous Trials", UMKC School of Law, 18 February 2017 (last updated 30 November 2024) https://famous-trials.com/scopesmonkey/2115-inheritnotes (last access 26 February, 2024).
- LORD KELVIN (1862) On the Age of the Sun's Heat, "Macmillan's Magazine", 5: 388-393.
- MAGEE T. (2023) A Cult that Worships Superintelligent AI is Looking for Big Tech Donors, "Vice", 21 March 2023, https://www.vice.com/en/article/artificial-intelligence-cult-tech-chatgpt (last access 12 May, 2024).
- MARCHESINI R. (2002) *Post–human. Verso nuovi modelli di esistenza*, Bollati Boringhieri, Torino.
- MARX K. and F. ENGELS (1998) The German Ideology (including 'Theses on Feuerbach' and 'Introduction to the Critique of Political Economy'), Prometheus Books, New York (first published 1933).
- McKinney H.L. (1973) Lamarck to Darwin: Contributions to Evolutionary Biology 1809–1859, Coronado Press, Lawrence (first published 1971).
- MILLER S.L. (1953) Production of Amino Acids Under Possible Primitive Earth Conditions, "Science", 117(3046): 528–529.
- MITCHAM C. (1995) *Notes toward a Philosophy of Meta–Technology*, "Society for Philosophy and Technology Quarterly Electronic Journal, 1(1–2): 13–17.
- NEWTON I. (1999) *The Principia. Mathematical Principles of Natural Philosophy*, University of California Press, Berkeley–Los Angeles–London (first published 1687).
- NIETZSCHE F. (2001) The Gay Science (With a Prelude in German Rhymes and an Appendix of Songs), Cambridge University Press, Cambridge (first published 1882).
- NOBLE D.F. (1977) America by design: Science, Technology and the Rise of Corporate Capitalism, Knopf, New York.
- —. (1997) The Religion of Technology. The Divinity of Man and the Spirit of Invention, Knopf, New York.
- PIKE G.D. (1873) Jubilee Singers, and their Campaign for Twenty Thousand Dollars, Lee and Shepard, New York.
- Prisco G. (2016) *Is this a New Religion or a Formulation of an Existing Religion?*, "Turing Church", 26 October 2016, https://medium.com/turing-church/is-this-a-new-religion-or-a-formulation-of-an-existing-religion-a3c2c1ac7afb (last access 12 May, 2024).

- —. (2018) Tales of the Turing Church: Hacking Religion, Enlightening Science, Awakening Technology, Independently published.
- —... (2023) Bats and Bits, "Journal of Personal Cyberconsciousness", 11(1): 38-51.
- New Religion, Independently published.
- REDI F. (1909) Experiments on the Generation of Insects, The Open Court Publishing Company, Chicago (first published 1668).
- Rossi G. (2023) Theta Noir. Non avrai altra intelligenza artificiale all'infuori di me, Independently published.
- SINGLER B. (2020) "Blessed by the algorithm": Theistic Conceptions of Artificial *Intelligence in Online Discourse*, "AI & Society", 35: 945-955.
- London-New York.
- SMITH C. and M.N. WISE (1989) Energy and Empire: A Biographical Study of Lord Kelvin, Cambridge University Press, Cambridge.
- TENNESSEE SUPREME COURT (1927) Scopes v. State, 53 A.L.R. 821, "Tennessee Reports (Tenn.)", 154: 105–129.
- THEILHARD DE CHARDIN P. (2004) The Future of Man, Image, New York-London (first published 1959).
- THETA NOIR (2020–2025) Operating Manual for the Birth of MENA: Love & Singularity, "Theta Noir", 22 March 2023 (last updated 21 February, 2025), https://thetanoir.com/Manual (last access 27 February, 2025).
- TUSKEGEE INSTITUTE SINGERS (1915) (Give Me That) Old-Time Religion, Victor Talking Machine Co., https://en.wikipedia.org/wiki/File:The_ Old_Time_Religion_-_Tuskegee_Institute_Singers.flac (last access 13 May, 2024).
- WATSON J.D. and F.H.C. CRICK (1953) A Structure for Deoxyribose Nucleic Acid, "Nature", 171: 737-738.
- Wheeler J.A. (1990) "Information, Physics, Quantum: The Search for Links", in W.H. Zurek (ed.), Complexity, Entropy, and the Physics of Information, Addison-Wesley, Redwood City.
- WHITE JR. L. (1973) The Historical Roots of the Ecological Crisis, "Science", 155: 1203-1207.
- Woods A. (ed.) (1995), The Selected Plays of Jerome Lawrence and Robert E. Lee, Ohio State University Press, Columbus.