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Introduction

In this book I will speak about unprovable truths within mathematics,
namely truths that principles of mathematics cannot prove. I will focus my
attention on Gödel’s sentences and the Continuum Hypothesis. You have
to pay attention to the fact that the Continuum Hypothesis was considered
by David Hilbert as the first mathematical problem to be solved. This book
is constituted by two parts (e.g. two main chapters). In the first part, I will
address mathematical issues related to arithmetic. In this part i will explain
Gödel’s theorems. This part must be considered as a sort of introduction to
the part about the continuum hypothesis. This book might be considered a
kind of travel where we can see how the phenomenon of incompleteness
(e.g. unprovable truths) arises within mathematics.

In order to start to speak about Gödel’s theorems we have to depart
from Liar paradox (ancient greek paradox). To examine this paradox we
must analyze the following sentence: this sentence is false. This sentence is
saying of itself that it is false. It is a self-referential sentence. This sentence
is a paradox since it is at the same time true and false. If we reason about
this paradox we can say that if it is false, since it is saying of itself that is
false, then it is true and if it is true, since it is saying of itself that is false,
then it is false. Therefore this sentence is at the same time true and false.
We cannot establish whether it is true or false. We cannot escape from
paradoxes. Another paradox, that caused many problems to logicians, was
Russelll paradox (). If we take the class of all classes that do not belong
to themselves, we can ask ourselves: Does the Russellian Class belong to
itself ? so, if it belongs to itself, since it the Class of all classes that do not
belong to themselves, it does not belong to itself and if it does not belong
to itself, since it is the Class of all classes that do not belong to themselves, it
belongs to itself. This is another paradox which threatens the foundation
of mathematics. Russell paradox forces us to abandon the idea that every
property can define a set (e.g. naive Fregean abstraction principle). Both
paradoxes do not have an immediate solution. To avoid them we have to
use meta-languages or we have to restrict the concepts used within set
theory. The Liar paradox inspired Kurt Gödel to construct Gödel’s sen-
tence, a truth that mathematical principles cannot prove. Kurt Gödel was
able to construct an arithmetical sentence that is saying: I am unprovable.
Even if this sentence is self-referential and resembles Liar paradox, it is
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not paradoxical, but it is a perfect arithmetical sentence. (i.e. Non-standard
view as we will see). After the procedure of decoding (e.g. I will explain
later) we discover that this sentence is saying: I am unprovable. Around 
many mathematicians were believing that the theory of arithmetic (e.g.
the theory of numbers , , , ) was complete. What does it mean to be
complete? it means that the principles of arithmetic could prove all truths.
If we have a truth, principles of arithmetic could prove it by deducing it
from these basic, evident principles. An axiomatic system is a set of these
basic, evident principles from which we can deduce all truths by adopt-
ing truth-preserving rules. In arithmetic we have Peano axiomatic system.
Peano axiomatic system is a set of seven, evident, basic principles from
which we can deduce truths regarding finite numbers (e.g. arithmetic). So,
at this point we can ask ourselves: is Peano axiomatic system complete?
can we prove all truths regarding arithmetic from Peano’s principles? Since
Presburger’s arithmetic was complete and Skolem’s srithmetic was com-
plete, many mathematicians were believing that also Peano’s arithmetic
was complete. We could derive all truths regarding finite numbers from
Peano’s principles by following truth-preserving rules. Unfortunately Kurt
Gödel proved that Peano axiomatic system is incomplete. There are truths
that Peano principles cannot prove. Kurt Gödel in  showed his results
that are called incompleteness theorems. There are truths that no axiomatic
system sufficiently strong can prove. Therefore there are unprovable truths.
So, now we can see how Kurt Gödel was able to construct this sentence
true but unprovable. By using Gödel numerical coding, Kurt Gödel was
able to construct a numerical sentence that when decoded is saying of itself:
I am umprovable. This sentence is true since it is unprovable (i.e. Standard
view or naive view). By adopting Gödel coding syntactic properties become
numerical properties. Being an Axiom, being a sentence, being a sentence
derived by modus ponens become simple numbers. Thanks to Gödel cod-
ing, we can define a numerical property Bew(m, n) which holds when m
is a code number of a proof of the sentence with code number n. The
property of being an axiom, a derivation, a mathematical proof, thanks to
Gödel coding, become numerical properties. The self referential Gödel
sentence, which says of itself to be unprovable, becomes a Gödel number
and it is self referential only when we translate back from Gödel numbering.
We have a numerical language which, unlike natural language, is precise
and it does not have problem of denotation. Now we have to see whether
Peano’ s axiomatic system is sufficiently strong. Peano’s axiomatic system
is sufficiently strong since it can capture all primitive recursive functions.
Primitive recursive functions are computable by definition (as we will see
later). We can compute primitive recursive functions!. Kurt Gödel was able
to show after constructing a chain of primitive recursive functions that the
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relation Bew(m, n), which holds when m is a code number of a proof of
the sentence with code number n, was primitive recursive. Thus, Peano
axiomatic system could capture it and was sufficiently strong. So, Kurt
Gödel could use it in order to construct the numerical sentence that, when
decoded, says of itself: I am unprovable.

Gödel’s arithmetical undecidable statements are not absolutely unde-
cidable. There is a sense, however, in which we can consider them benign
since to the extent that we are justified in accepting PA we are justified in
accepting Con(PA) and so we can expand the axiom system to solve incom-
pleteness. There are three ways to capture undecided sentences. As we will
see in section , Turing’s approach () of transfinite progression is an
example. Secondly we can consider Feferman’s approach (). When we
accept PA, we accept also any meaningful predicate on natural numbers. So
we are justified in accepting the system obtained by expanding the language
to include the truth predicate and allowing the truth predicate to figure
in the induction scheme. The expanded system can prove Con(PA). The
procedure can be iterated into the transfinite and it gives origin to a system
known as predicative analysis. Thirdly we have the most natural approach
since it involves moving to the system of next higher type, allowing variables
that range over subsets of natural numbers (i.e. real numbers). This system,
called second order arithmetic (i.e. PA), proves Con(PA). Kurt Gödel, when
was conceiving a possible solution to arithmetical undecided sentences was
keen on this third approach.

Furthermore in the second part of this book I will address the notion
of absolute provability that implies the general completeness theorem
advocated by Gödel. The Bohemian logician writes:

It is not impossible that for such a concept of demonstrability some completeness
theorem would hold which would say that every proposition expressible in set
theory is decidable from the present axioms plus some true assertions about the
largeness of the universe of all sets. [ Kurt Gödel () in [Kurt Gödel  p. ]]

Kurt Gödel in this passage is expressing the thesis that every problem
within set theory can be decided. We encounter the concept of absolute
demonstrability. This quotation is similar to the Hilbert’s mantra, namely
No Ignorabimus, or Leibniz’s mantra, Calculemus. This belief suggests that
we do not have absolute undecidable problems but every mathematical
proposition can be settled. The Continuum Hypothesis can be decided if
we discover a general completeness theorem. Woodin’s two main projects
[Woodin ] [Woodin b] belong to this conception that sees incom-
pleteness as residual, not central to the mathematical practice. Thus, if
the incompleteness phenomenon is residual or we might say that is an
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epiphenomenon within mathematics, every set-theoretic problem can be
settled including the Continuum Hypothesis. So we have to introduce new
principles to obtain a general completeness theorem. Maybe a solution
to open problems does not come from mathematics but from philosophy,
namely a conceptual analysis of the concept of set. Here we have Gödel’s
quotation expressing this idea:

This scarcity of results, even to the most fundamental questions in this field, may
be due to some extent to purely mathematical difficulties; it seems, however [. . . ]
that there are also deeper reasons behind it and that a complete solution of these
problems can be obtained only by a more profound analysis (than mathematics
is accustomed to give) of the meanings of the terms occurring in them (such as
set, one-to-one correspondence, etc) and of the axioms underlying their use.[Kurt
Gödel  p. ]

So if a solution comes from philosophy, we have to analyze the concept of set.
In the second part of this book we will analyze two conjectures that imply
Gödel’s general completeness theorem, namely the V=L Hypothesis and
the Ultimate L conjecture. The V=L Hypothesis is the following statement:

Definition  (V=L Hypothesis) ZFC + (true) reflection principles (Koellner’s pro-
gram) + Jensen’s covering theorem + Hamkins’ Maximality principle + Multiverse
principle + Putnam’s closure condition + V=L −→ Gödel’s general completeness
theorem.

Chapter I

The Dream of completeness

Preliminaries to this chapter

In this chapter I will discuss formally (mathematical language) the phe-
nomenon of incompleteness in arithmetic. I will discuss how the phe-
nomenon of incompleteness, discovered by Gödel, appears in first-order
arithmetic. I will examine different axioms that were assumed by mathemati-
cians to settle undecided questions.I will introduce Gödel’s incompleteness
theorems. Gödel’s sentences are unprovable truths of first-order arithmetic.
Then I will explain Turing’s completeness result about transfinite progres-
sions. Turing, by going into the transfinite, attempted to settle first-order
arithmetical sentences including Gödel’s sentences. Unfortunately, Turing’s
attempt was doomed to fail because of a problem connected with ordinal
notation, as we will see. Sometimes mathematicians assert that Gödel’s
sentences are not mathematically interesting. Therefore I will introduce
Goodstein’s theorem and the Finite extension of Ramsey theorem which
are considered mathematically interesting and were shown to be undecid-
able within Peano arithmetic. Then I will discuss Isaacson’s conjecture and
by assuming the non-standard view about Gödel’s sentence, I will argue that
this conjecture might be false. I will conclude this chapter by introducing
Chaitin’s magical Ω numbers and I will discuss randomness. I will show by
following Chaitin’s results that randomness implies incompleteness.

.. Gödel’s theorems

... Prerequisites to this section

The language of arithmetic consists of first-order logic apparatus and the
following symbols: -ary function symbol (costant) , unuary function
symbol S (the successor function), two binary function symbols +,×, two
binary relation symbols =, < and for each n, infinitely many n-ary predicate
symbols Xn. Now we can introduce Levy’s hierarchy. A formula φ is Σ

or Π (∆) if and only if it does not contain unbounded quantificators. For
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n≥ , by recursion, we assert that φ is Σn if and only if has the form ∃x̃ψ(x̃)
where ψ(x̃) is Πn−. and that φ is Πn if and only if it has the following form
∀x̃ψ(x̃) where ψ(x̃) is Σn−. Therefore, when we assert that a formula is
Σn, we want to say, first of all, that it consists of a∆ formula which has n
blocks of existential quantificators in front. Secondly, this formula starts with
a block of existential quantificators. Thirdly, this formula is characterized by
an alternation of blocks of universal quantificators and blocks of existential
quantificators. A formula is ∆ if it is equivalent to both a Σ and a Π

formula. Usually, we will use also superscripts that point out to the order
of formulas. For example a Π


formula starts with an unbounded block of

universal quantificators and it is a first-order formula. Let n >  be a natural
number and let us consider the nth order predicate calculus. There are
variables of orders , , . . . ,n and the quantifiers are applied to variables of
all orders. An nth order formula contains, in addition to first-order symbols
and higher order quantifiers, predicates X(z) where X and z are variables
of order κ+  and κ respectively (for any κ < n). Satisfaction for an nth
order formula in a model M = (A, P, . . . , f , . . . , c, . . . , ) is defined as follows:
variables of first-order are interpreted as elements of the set A, variables of
second-order as elements of P(A) (as subsets of A), etc; variables of order
n are interpreted as elements of Pn−(A). The predicate X(z) is interpreted
as z ∈ X. A Πn

m
formula is a formula of order n +  of the form ∀X∃Y. . .ψ

(m quantifiers) where X, Y, are (n + )th order variables and ψ is such that
all quantified variables are of order at most n. Similarly, a Σn

m
formula is the

same but with ∃ and ∀ interchanged. See [Jech ]

... Preliminaries to this section

In the first two sections we will become aware that the phenomenon of
incompleteness appears naturally in first order arithmetic. To escape from
incompleteness, we have to make very strong assumptions. In section 
I will present some notions of computability. I will define the notions of
primitive recursive functions and partial recursive functions. Then, I will
explain Church’s thesis and I will discuss it philosophically in connection
with the consistency of ZFC and Intuitionism. Finally, I will introduce
Turing’s Universe and Turing’s degrees of computability. Gödel’s first in-
completeness theorem establishes that there is a missmatch between truth
and theoremhood within PA. This section aims at showing what is the
distance between truth and theoremhood within PA in terms of Turing’s
degrees of computability. In this section, I will introduce also some notions
related to intuitionism. In fact, I will argue that Church’s thesis can be
considered as potentially true but it cannot be seen as an atemporal truth.
In section  I will discuss Gödel’s incompleteness theorems. I will show
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how it is possible to construct a Gödel’s sentence. In this section we will
discuss how the phenomenon of incompleteness was discovered by Gödel
in . In section  we discuss statements unprovable within PA mathe-
matically interesting (Goodstein’s theorem and the extended finite Ramsay
theorem).Sometimes mathematicians say that Gödel’s sentences are not
mathematically interesting. So, I want to consider Goodstein’s theorem
and an extension of the finite Ramsey theorem, two arithmetical statement
which PA cannot prove. So, we can say that the phenomenon of incomplete-
ness is an essential feature of first-order arithmetic. I will conclude this part
by examining Isaacson’s conjecture and by assuming the non-standard view
I will assert that Gödel’s sentence is perfectly arithmetical sentence and so
we might disprove Isaacson’s conjecture.

.. Brief introduction to unprovable truths

I entitled this chapter the dream of completeness because at the beginning
of the last century many mathematicians believed that all mathematical
truths could be proved. The axiomatic systems, such as Peano arithmetic
and Zermelo-Frankel axiomatic set theory, were considered to be complete.
We could prove all truths by deducing them from the axioms. A theory is
complete if for every formula, the theory can prove the formula itself or
its negation. Unfortunately, in , Kurt Gödel proved that no consistent
axiomatic theory that is sufficiently strong is complete. There are truths that
cannot be proved. The day after Gödel communicated his famous result to a
philosophical meeting in Könisberg, in September , David Hilbert could
be found in another part of the same city delivering the opening address to
the Society of German Scientists and Physicians, famously declaring:

For the mathematician there is no Ignorabimus, and, in my opinion, not at all for
natural science either. . . The true reason why (no one) has succeeded in finding
an unsolvable problem is, in my opininion, that there is no unsolvable problem.
In contrast to the foolish Ignorabimus, our credo avers: We must know, We shall
know. [Cooper  p. ]

For the first incompleteness theorem there is a sentence (Gödel sentence)
that is true but unprovable within Peano axiomatic number system. Gödel
sentence says that I am unprovable and it is true because it is unprovable. At
the first look, it can seem a self-referential sentence which is similar to the
liar paradox, but it is not the case. In fact, for Gödel’s coding (as we will see
later), Gödel sentence is an arithmetical sentence expressed in the language
of arithmetic. Only at the moment that we decode the sentence we discover
that this sentence says of itself to be unprovable. So Peano axiomatic system,
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which aims at pinning down the structure of natural numbers is incomplete.
There are truths that cannot be proved.

Let us introduce the axioms of Peano’s first-order axiomatic system (PA).
The language of PA is a first-order language whose non-logical vocabu-

lary includes the constant  (zero), the one-place function S (the successor
function) and the two-place functions + (addition) and × (multiplication).
The axioms are the following:

a) ∀x( �= Sx)
b) ∀x∀y(Sx = Sy−→ x = y)
c) ∀x(x +  = x)
d) ∀x∀y(x + Sy = S(x + y))
e) ∀x(x×  = )
f ) ∀x∀y(x× Sy = (x× y) + x)
g) (Induction schema)φ()∧∀x(φ(x)−→ φ(S(x))−→∀xφ(x), for every

formula.

The most problematic axiom is the Induction schema, since by assuming
this axiom, we are refering to numerical properties. Thus, ideally we should
be able to quantify over numerical properties (sets). So we should adopt a
second-order version of it. But in first-order axiomatic system, quantifiers
range over the domain of numbers, so we are forced to adopt first-order
language. The solution is represented by the fact that we use a schema.
Thus, any first-order formula expressing a property which fits the template
is an induction axiom.

An important subsystem of Peano axiomatic system is Robinson’s arith-
metic, (Q), which has the following axioms:

a) ∀x( �= Sx)
b) ∀x∀y(Sx = Sy−→ x = y)
c) ∀x(x �= −→ ∃y(x = Sy))
d) ∀x(x +  = x)
e) ∀x∀y(x + Sy = S(x + y))
f ) ∀x(x×  = )
g) ∀x∀y(x× Sy = (x× y) + x)

Q is a sound theory, its axioms are all true in the standard model of
arithmetic and its logic is truth-preserving. But, Q is incomplete. There are
very simple true quantified sentences that Q cannot prove. It cannot prove
universal generalizations. Since Q lacks the induction schema, it cannot han-
dle all quantified sentences. However, although Robinson’s arithmetic is a
weak theory, it is very interesting. In fact, Q is sufficiently strong. This weak
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subsystem of Peano’s arithmetic is Σ-complete. It can prove all true Σ

sentences. Furthermore, all primitive recursive functions can be expressed
by a Σ formula in Q sentences. Therefore, Q can represent all primitive
recursive functions including the demonstrability predicate, fundamental in
the construction of the undecidable Gödel sentence. Suppose a theory of
arithmetic is formally axiomatized, consistent and can prove everything that
Q can prove (a very weak requirement). Then this theory will be sufficiently
strong and so will be incomplete since it will be possible within this theory
to construct Gödel’s undecidable sentence.

The first incompleteness theorem undermines Principia Mathematica’s
logicism. However in , the logicist project was over. Instead, the domi-
nant project was Hilbert’s program which aimed at showing that infinitary
mathematics was not contradictory. Hilbert was thinking that we should
divide mathematics into a core of uncontentious real mathematics and a
superstructure of ideal mathematics. Propositions of real mathematics are
simply true or false. Four plus two is six and two plus one is three. We
could say according to the simplicity of the statements [Smith  p. ]
that Π-statements of arithmetic belong to Hilbert’s uncontentious real
mathematics. We will discover later that many Π-statement are unprov-
able, such as Gödel sentence, the consistency statement (Gödel second
incompleteness theorem) and Goldbach’s conjecture whereas other Π

statements are provable such as the Last theorem of Fermat. By contrast,
ideal mathematics shouldn’t be thought of as having representational con-
tent and its sentences aren’t strictly-speaking true or false. In pursuing this
idea, Hilbert took a very restricted view of real mathematics. Influenced
by Kant, Hilbert thought that the most certain of arithmetic was grounded
on intuition, which enabled us to understand finite sequences of numbers
and results when we manipulated them. Hilbert’s view is characterised by
two components, namely strict finitism and a formalistic approach towards
mathematics. For the German mathematician mathematics is represented
by finite strings of symbols that we manipulate. Maybe we can identify
what Hilbert was thinking by using the term real core mathematics, with
the theory PRA, namely first-order arithmetic plus primitive recursive func-
tions. In fact from one side PRA is a theory about arithmetic and from the
other side it is strong enough to capture all primitive recursive functions.
So according to Hilbert’s view, we must distinguish real core mathematics

. In the language of arithmetic ∆ formulas are bounded formulas built up using identity,
the less-then-or-equal relation, propositional connectives and bounded quantifiers. Σ formulas are
unbounded existential quantifications of∆ formulas andΠ are universal unbounded quantifications
of∆ formulas.

. We mean by Logicism a theory which implies that all arithmetical truths can be derived
from basic, self-evident, logical truths. This theory aims at constructing mathematics upon logic.
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from its ideal superstructure (such as set theory). Then you want to know
which bits of ideal mathematics are safe to use, are real-sound, namely what
ideal mathematics proves is true. For this one has to find which parts of ideal
mathematics can be proved finitistically consistent. A corollary of the first
Gödel incompleteness theorem was the second Gödel incompleteness theo-
rem which states: no consistent sufficiently strong theory can prove its own
consistency. Robinson’s arithmetic (Q) and Peano arithmetic (PA) cannot
have a proof of their own consistency. So no modest formal arithmetic can
establish the consistency of a fancy ideal theory. So we cannot have consis-
tency proofs for branches of ideal mathematics. Therefore, Hilbert’s project
of trying to establish the real soundness of ideal mathematics by giving
consistency proofs using real and contentual mathematics was demolished
by Gödel’s second incompleteness theorem.

Returning to Gödel’s first incompleteness theorem, we have that Gödel
sentence is unprovable or undecidable. We can also say that it is incom-
putable. We use the term computable for functions, namely computable
by a Turing machine or by recursion, when the informal instructions of
an algorithm are made formal. Using the term computable truth means
that we can give a proof of that truth (tree proof or linear sequence proof ).
At this point, we have to clarify the concept of truth in mathematics: why
a mathematical sentence is true? We could answer that a mathematical
sentence is true because it is proved within the axiomatic system such as
PA, or outside the system, or because there is an independent mathematical
reality which makes the sentence true. However, mathematical truth is a
definite and precise mathematical property that we express by inductive
definitions. Alfred Tarski introduced inductive definitions of truth which
made the notion of truth a precise mathematical property. Gödel proved his
two incompleteness theorems by looking outside the formal system and
when we come across Gödel sentence, we discover that it is true because
it is unprovable. So there is a strong link between truth and provability
in mathematics, but thanks to Gödel’s theorem we can say that there is
a miss-match between truths and proofs. I entitled this section the dream
of completeness yet around  many mathematicians were believing that
it would have been possible that Peano axiomatic system was complete.
In fact in  Mojźesz Presburger proved that the theory P (PA Peano
arithmetic minus multiplication) was complete. In the same year, Thoralf
Skolem proved that a theory with multiplication, but lacking addition, was
complete. Therefore, many mathematicians were hoping that also Peano
arithmetic was complete. It is interesting to know that Presburger used in
his proof a model-theoretic procedure (quantifier elimination) which also

. In  Hilbert and Bernays gave a formal proof of Gödel’s theorems within the system.
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Alfred Tarski later adopted to show that the theory of real closed fields
is complete. Therefore in  many mathematicians were thinking that
also Peano arithmetic PA would be a complete theory. In fact, even Gödel
attempted to prove the completeness of Peano arithmetic. But if arithmetic
with multiplication minus addition, and arithmetic with addition minus mul-
tiplication, are complete theories we should ask ourselves why when we put
together these two operations we have the phenomenon of incompleteness.
The reason is that thanks to addition and multiplication we can construct
a chain of primitive recursive functions and we can show at the end that
the predicate of demonstrability Bew is primitive recursive. Since in Peano
arithmetic all primitive recursive functions are representable, also the predi-
cate of demonstrability is representable and so we can construct Gödel’s
sentence which says of itself to be unprovable. Sometimes mathematicians
assert that Gödel’s sentences are not mathematically interesting.

.. Turing’s universe

At this point, before constructing Gödel’s sentence, I want to speak a little
about computability. This section aims at showing what is the distance
between truth and theoremhood within PA in terms of Turing’s degrees
of computability. Computability is strongly connected to completeness.
Actually, we should say that incompleteness is a subclass of incomputability.
To compute a function, we need the notion of algorithm which is a set of
finite informal instructions. If we want to compute a function, we have
to follow all informal steps of an algorithm. However, we have always to
cope with informal instructions. Alan Turing and Kurt Gödel were focusing
at rendering the informal notion of algorithm formal. Gödel’s recursive
functions emerge from the logic, and so are very useful for formalizing
algorithms. The definition of recursive functions is what we call an inductive
definition. We start by defining a small class of very simple functions, called
initial functions, to be recursive (base of induction). And then we introduce
a small number of rules for deriving new recursive functions from those
already obtained via the inductive process. We start with primitive recursive
functions:

Definition  (The primitive recursive functions)
) The initial functions (a)-(c) are primitive recursive:
(a) The Zero function defined by  (n) = , ∀n ∈N
(b) The successor function defined by n′ = n + , ∀n ∈N
(c) The projection function Uκ

i
defined by Uκ

i
(�m) = mi eachκ≥ , and i = , . . . ,κ
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of completeness yet around  many mathematicians were believing that
it would have been possible that Peano axiomatic system was complete.
In fact in  Mojźesz Presburger proved that the theory P (PA Peano
arithmetic minus multiplication) was complete. In the same year, Thoralf
Skolem proved that a theory with multiplication, but lacking addition, was
complete. Therefore, many mathematicians were hoping that also Peano
arithmetic was complete. It is interesting to know that Presburger used in
his proof a model-theoretic procedure (quantifier elimination) which also

. In  Hilbert and Bernays gave a formal proof of Gödel’s theorems within the system.
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Alfred Tarski later adopted to show that the theory of real closed fields
is complete. Therefore in  many mathematicians were thinking that
also Peano arithmetic PA would be a complete theory. In fact, even Gödel
attempted to prove the completeness of Peano arithmetic. But if arithmetic
with multiplication minus addition, and arithmetic with addition minus mul-
tiplication, are complete theories we should ask ourselves why when we put
together these two operations we have the phenomenon of incompleteness.
The reason is that thanks to addition and multiplication we can construct
a chain of primitive recursive functions and we can show at the end that
the predicate of demonstrability Bew is primitive recursive. Since in Peano
arithmetic all primitive recursive functions are representable, also the predi-
cate of demonstrability is representable and so we can construct Gödel’s
sentence which says of itself to be unprovable. Sometimes mathematicians
assert that Gödel’s sentences are not mathematically interesting.

.. Turing’s universe

At this point, before constructing Gödel’s sentence, I want to speak a little
about computability. This section aims at showing what is the distance
between truth and theoremhood within PA in terms of Turing’s degrees
of computability. Computability is strongly connected to completeness.
Actually, we should say that incompleteness is a subclass of incomputability.
To compute a function, we need the notion of algorithm which is a set of
finite informal instructions. If we want to compute a function, we have
to follow all informal steps of an algorithm. However, we have always to
cope with informal instructions. Alan Turing and Kurt Gödel were focusing
at rendering the informal notion of algorithm formal. Gödel’s recursive
functions emerge from the logic, and so are very useful for formalizing
algorithms. The definition of recursive functions is what we call an inductive
definition. We start by defining a small class of very simple functions, called
initial functions, to be recursive (base of induction). And then we introduce
a small number of rules for deriving new recursive functions from those
already obtained via the inductive process. We start with primitive recursive
functions:

Definition  (The primitive recursive functions)
) The initial functions (a)-(c) are primitive recursive:
(a) The Zero function defined by  (n) = , ∀n ∈N
(b) The successor function defined by n′ = n + , ∀n ∈N
(c) The projection function Uκ

i
defined by Uκ

i
(�m) = mi eachκ≥ , and i = , . . . ,κ
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) if g h, h, . . . , h are primitive recursive, then so f obtained obtained from g
h, h, . . . , h by one of the rules:
(d) Substitution given by: f (�m) = g(h(�m). . . h(�m))
(e) Primitive recursion given by: f (�m, ) = g(�m),

f (�m, n + ) = h(�m, n, f (�m, n))

The primitive recursive scheme describes how we inductively define value
of f , getting f (�m, n + ) via known primitive recursive functions in terms
of the given parameters �m, the argument n, and the previously computed
value f (�m, n). Addition is primitive recursive since we have:

m + = m
m + (n + ) = (m + n) +  = (m + n)′. Formally we have:
f (m, ) = U


= n,

f (m, n + ) = f (m, n)′ = (U


(m, n, f (m, n)))′.

Multiplication is primitive recursive. In fact we have:
m×  = 
m× (n + ) = (m× n) + m. Predecessor function, recursive difference, ab-

solute difference, remainder function, bounded sums and bounded product
are all primitive recursive. We could expect that with primitive recursive
functions we have all computable functions. However by adopting nested
recursion, in  Ackermann defined a computable function A which is
not primitive recursive. Here we have the function:

A(m, ) = m + 
A(, n + )= A(, n)
A(m + , n + )= A (A(m, m +), n).
Now we can introduce partial recursive functions:

Definition  We say that a function A :−→ B is total if f (x) is defined for every
x ∈ A, f (x) ↓.

Otherwise if f (x) is undefined (f (x) ↑) for some x ∈ A we say that f is partial.

Now we define a larger class of functions, called partial recursive functions.
This is done by the the following rule:

Definition  (µ-operator or minimalization) If g(�n, m) is partial recursive then
so is f given by:

f (�n) = µm[g(�n, m) = ]

. Fibonacci sequence is primitive recursive
. Ackermann is not primitive recursive since it dominates all primitive recursive functions as

the Busy Beaver Function dominates all URM program functions
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where µm[g(�n, m) = ] = m↔ g(�n, m) =  and (∀m < m)[g(�n, m) ↓�= ]

The µ operator is a search operation. It says compute g(�n, ) . . . etc until we
have g(�n, m) = . So m is the value wanted. Surely, this search might go for
ever if no such m exists, in which case f (�n) does not get defined. Thus we
have this large class of partial recursive functions. These functions can be
defined from initial functions, using finite applications of Substitution and
primitive recursive scheme, and finally from the µ-operator.

At this point, let’s introduce Church’s thesis.

Definition  (Church) f is effectively computable if and only if it is partial recur-
sive.

Thanks to this thesis, the informal side of computation (algorithm) is com-
bined with the formal side of computation (partial recursive functions). f
is effectively computable if there exists some description of an algorithm,
in some language, which can be used to compute any value f (x) for which
f (x) ↓. Church’s thesis is independent from the language for computing.
We establish a strong equivalence between all models of computations and
formulate Church’s thesis for all these different models (Lambda calculus,
Turing machine, and unlimited register machine). Functions, that can be
computed, are the same independently of the model of computation that
we adopt. Church’s thesis states that if someone can give a description of
an algorithm for computing f , then there is a description of f as a partial
recursive function or a Turing machine or in Lambda calculus or as an
unlimited register machine. Church’s thesis is true until now, because no-
body has been able to find a counterexample to this thesis. However, it is
possible to conceive a counterfactual situation or, possible world, where
someone is capable of constructing an algorithm for computing f (x) which
does not have a formal description as a partial recursive function or as a
Turing machine. By considering Church’s thesis as true, we are introducing
a temporal component in our world of mathematics. Church’s thesis is true
until now, but we cannot exclude that in the future someone will disprove
it (finding a particular informal algorithm). Furthermore, we can say that
Church’s thesis is potentially true and has a temporal component (I will clar-
ify these notions immediately after the introduction of some ideas related
to intuitionism). When someone proves a theorem, according to classical
mathematics, this theorem is atemporally true and actual true (I will explain
this notion immediately). In classical mathematics, a truth does not have
the dimension of time and is atemporal, because a proposition is true also
before that a proof is constructed. Truths are outside the dimension of time
and by constructing proofs, according to the classical vision of mathematics,
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have g(�n, m) = . So m is the value wanted. Surely, this search might go for
ever if no such m exists, in which case f (�n) does not get defined. Thus we
have this large class of partial recursive functions. These functions can be
defined from initial functions, using finite applications of Substitution and
primitive recursive scheme, and finally from the µ-operator.

At this point, let’s introduce Church’s thesis.

Definition  (Church) f is effectively computable if and only if it is partial recur-
sive.

Thanks to this thesis, the informal side of computation (algorithm) is com-
bined with the formal side of computation (partial recursive functions). f
is effectively computable if there exists some description of an algorithm,
in some language, which can be used to compute any value f (x) for which
f (x) ↓. Church’s thesis is independent from the language for computing.
We establish a strong equivalence between all models of computations and
formulate Church’s thesis for all these different models (Lambda calculus,
Turing machine, and unlimited register machine). Functions, that can be
computed, are the same independently of the model of computation that
we adopt. Church’s thesis states that if someone can give a description of
an algorithm for computing f , then there is a description of f as a partial
recursive function or a Turing machine or in Lambda calculus or as an
unlimited register machine. Church’s thesis is true until now, because no-
body has been able to find a counterexample to this thesis. However, it is
possible to conceive a counterfactual situation or, possible world, where
someone is capable of constructing an algorithm for computing f (x) which
does not have a formal description as a partial recursive function or as a
Turing machine. By considering Church’s thesis as true, we are introducing
a temporal component in our world of mathematics. Church’s thesis is true
until now, but we cannot exclude that in the future someone will disprove
it (finding a particular informal algorithm). Furthermore, we can say that
Church’s thesis is potentially true and has a temporal component (I will clar-
ify these notions immediately after the introduction of some ideas related
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the dimension of time and is atemporal, because a proposition is true also
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and by constructing proofs, according to the classical vision of mathematics,
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we simply discover and capture them. In the case of Church’s thesis, there
is a temporal component, namely until now it is true. Church’s thesis has a
temporal component. Maybe, we should adopt a different conception of
mathematics, such as intuitionism where the notion of time comes into the
realm of mathematics. As Church’s thesis, also the consistency of ZFC has a
temporal component. Because of Gödel’s second incompleteness theorem,
we cannot prove directly the consistency of ZFC. Of course, we can trust
the ZFC system, but we cannot exclude that in the future someone will
discover a contradiction in it. Thus, ZFC is consistent until now. It has a
temporal component. For the consistency of ZFC as for the truth of Church
thesis, there is a temporal component which forces us to consider intu-
tionism. To clarify this conception, I want to discuss some ideas related to
intuitionism. Brouwer, the father of intuitionism, considered mathematics
as activity of mental construction independent from the language. So, for
Brouwer, Logic was not essential to mathematics. For Brouwer, a mathe-
matical proposition is true when we can show a construction of it. At the
beginning of his thought, Brouwer was rejecting hypothetical constructions
and contradictions, but then he adopted the same view of Heyting, the
other father of mathematical intuitionism. According to Heyting, ¬A is true
if the hypothesis that A is true causes a contradiction. This is the hypothetical
interpretation of negation which characterizes the conception of Heyting.
In , Brouwer accepted hypothetical constructions and contradictions.
In fact, he took position against mathematics without negation conceived
by Griss. While for Brouwer mathematics was an activity without need of
any languages, for Heyting language was essential for mathematics in order
to communicate mathematical constructions. In fact, Heyting developed
intuitionistic logic because he was thinking to render mathematics com-
municable in a formal language. According to Heyting, the fundamental
activity of our mind is that of creating entities. This construction of abstract
entities is the foundation of intuitionistic mathematics. Heyting rejects a
platonistic-realistic philosophy of mathematics. In fact, in , he wrote:

An intuitionistic mathematician would not take position against a philosophy which
holds that mind, during his creative activity, reproduces entities of a transcendent
world, but he would consider this doctrine too speculative as foundation of pure
mathematics. [Heyting ]

Heyting rejects the idea that there is a transcendent world of mathematics
independent from human mind, which renders mathematical propositions
true or false, but for Heyting mathematics is a creation of human mind.
Furthermore, he wants to change the classical vision of mathematics by
saying that truth is not anymore the fundamental notion but intuitionistic
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mathematics is based on the notion of knowledge. For Heyting, a mathemat-
ical proposition is true when we know that proposition because it is evident
or by showing a construction (proof ) of it. So, intuitionistic mathematics
there are not truths independent from our act of knowing them or are pre-
existing to our knowledge. There are not atemporal truths in mathematics
but there are only temporal truths. We could say that according to intu-
itionism, a mathematical proposition starts to be true because it is evident
or after that we show a proof (construction) of it. In , Heyting formu-
lated the positive principle which states that every mathematical theorem
is the result of a successful construction. For Brouwer and Heyting truth
becomes a temporal property of propositions. When we have an actual
proof or construction of a proposition, we can consider that proposition
as true. Martin-Löf [Martin-Lof ], combining Heyting’s view with the
classical mathematics’ point of view, distinguishes between actual truth and
potential truth of a proposition (he reconsiders the Aristotelian distinction
between act and potentiality). So, a proposition is actual true if we have a
construction or a proof of it. However, the same proposition was poten-
tially true also before a proof of it and it will be potentially true even if
nobody will prove it. So, for Martin-Löf a potential truth is independent
from human knowledge and it is atemporal. Instead, following Heyting,
he sustains that actual truths are dependent from human knowledge and
are temporal. Also Prawitz [Prawitz ] wants to combine intutionism
with the belief that there are eternal-atemporal truths. Prawits introduces a
proof-theoretic platonism. He believes that there is an independent world of
proofs. Therefore, for Prawitz, proofs are actual existent but only potentially
knowable by human beings. So, there might be atemporal mathematical
truths because there are actual proofs in Prawitz’s independent world of
proofs, but we do not know them. Thus, Prawitz, in order to save atem-
porality in mathematics by adopting intuitionism as a point of view, he
assumes a realistic-platonic philosophy of mathematics which Heyting and
Brouwer would reject.

Now, we can discuss Church’s thesis and the consistency of ZFC. For
Heyting and Brouwer, since we do not have a construction or a proof of
these two mathematical propositions, Church’s thesis and Con(ZFC) cannot
be considered as truths neither temporal truths. Heyting and Brouwer
would have said that we do not know these mathematical propositions and
so we do not know their truth values. If we adopt Martin-Löf conception, we
can say that Church’s thesis and Con(ZFC) are potential truths. Thus, they
are atemporal truths only because they are potential. However, they are not
actual truths since we do not have yet a construction or proof of them. If we
adopt Prawitz’s view, we can say that, maybe, there exist atemporal proofs or
constructions of Church’s thesis and Con(ZFC) in the realm of the platonic-


