BBBBBB

Classificazione Decimale Dewey:

005.8 (23.) SICUREZZA DEI DATI

GERARDO IOVANE, VINCENZO OLIVA

RED TEAM
CYBERSECURITY

LECTURES

CYBER ATTACK ON 108 SYSTEMS:
THEORY, ENGINEERING AND
ALGORITHMS

@

aracne

aracne
©

ISBN
979-12-218-2526-8

PRIMA EDIZIONE
ROMA 19 FERBBRAIO 202§

Table of Contents

PART I 9
1. INTRODUCTION 9
2. MOBILE SECURITY ARCHITECTURE AND THREAT LANDSCAPE 11
3. RED TEAM METHODOLOGY FOR 10S 45
4. RECONNAISSANCE AND INTELLIGENCE COLLECTION 69
5. PAYLOAD ENGINEERING AND DELIVERY 87
6. POST-EXPLOITATION AND CONTROL 109
7. CONCLUSION 127
PARTII 131
INTRODUCTION 131
8. IAMATTACKON IOS 133
9. 10S DEVICE FINGERPRINTING 137
10. PRIVILEGE ESCALATION ON I0S 141
11. 10S PERSISTENCE MECHANISM 145
12. EXFILTRATION/SABOTAGE MODULE ON I0S 149
13. 10S STEALTH AND ANTI-FORENSICS 153
14. C41 INTERACTION AND COMMAND & CONTROL ON IOS 157
15. 10S INITIAL DEPLOY STEALTH 161
16. 10S PAYLOAD STEALTH SELF-LOADING 165

17. EXTENDEND FINGERPRINTING AND ADVANCED SYSTEM DATA COLLECTION ON I0S.....169

18. ADVANCED PERSISTENCE VIA LAUNCH DAEMON ON I10S 173
19. DYNAMIC ANTI-ANALYSIS AND ANTI-DEBUGGING ON 10S 177
20. STEALTH PAYLOAD AUTO-UPDATE ON IOS 181
21. SECURE ERASE AND AUTO-WIPE AT RISK ON 10S 185
22. COMMAND AND CONTROL MODULATION SYSTEM FOR 10S (C2 MODULAR FRAMEWORK)......189
23. RUNTIME CAMOUFLAGE AND OPERATIONAL OBFUSCATION ON IOS. 193
24. SILENT EXFILTRATION OF SENSITIVE DATA VIA ENCRYPTED CHANNELS ON IOS.....ooovvuusersssssseen 197

25. ALTERNATIVE PERSISTENCE MECHANISMS VIA APP NAP AND BACKGROUND EXECUTION ONI0S..201
26. 10S FORENSICS EVASION TECHNIQUES (ADVANCED FORENSIC EVASION).....coouusmmmmumsssssas 205
27. DEPLOYMENT DI PAYLOAD SECONDARI SU 10S (SECOND STAGE DEPLOY)....cconnnummsncnsasienns 209

6 Table of Contents

28. MULTI-CHANNEL COMMUNICATIONS AND FAILOVER SYSTEM FOR C2 RESILIENT ON I0S
213
29. IMPLEMENTING ENCRYPTED AND AUTHENTICATED AUTO-UPDATE STRATEGIES ON 10S
217
30. MULTIPLE SESSION MANAGEMENT AND OPPORTUNISTIC ENCRYPTION FOR I0S.............. 223
31 DYNAMIC EXECUTION OF HOT-LOADED MODULES ON 10S (HOT-LOADED MODULES
MANAGEMENT) 227
32. ADVANCED SELF-DESTRUCTION ON I0S (FULL WIPE AND SAFE FADE)....cc.cccismmmsmssns 231
33. ADVANCED PERSISTENCE VIA 10S SYSTEM PROCESS INJECTION 235
34. DYNAMIC ENVIRONMENTAL AWARENESS AND PAYLOAD POLYMORPHISM ON I0S.......... 239
35. COVERT CHANNEL DATA EXFILTRATION VIA STANDARD APPS ON I0Scoocunummmmmmssssssnnn 243
36. REMOTE RECONFIGURATION AND TASKING FRAMEWORK FOR PEGASUS I0S.......couuuuutunne 247
37. CONTROLLED SUMMONING AND SILENT RECALL MODULE 251
38. SECURE DEAD DROP COMMUNICATION ON I0S (ANONYMOUS DATA EXCHANGE CHANNEL)
255
39. SELF-MUTATION OF DYNAMIC PERSISTENCE AND EVASION MODULEScccconnmmmmmssssannns 259
40. SECURE CONTROL HANDOVER BETWEEN MODULES IN HOSTILE ENVIRONMENT............... 263
41. DATA FRAGMENTATION AND MULTI-CHANNEL EXFILTRATION ON IOS....ccccnnnmmmmsmmmssrsnsnns 267
42, PERSISTENCE HARDENING VIA MULTI-VECTOR REDUNDANCY. 271
43. PROGRAMMABLE SELF-DESTRUCTION ENGINE FOR 10S 275
44, ADAPTIVE SLEEP CYCLES BASED ON ENVIRONMENTAL ANALYSIS 279
45, SECURE DYNAMIC RECONFIGURATION ENGINE 283
46. ANTI-FORENSICS REAL-TIME FILE WIPING 287
47. SECURE REMOTE KILL SWITCH 291
48. RESILIENT SELF-HEALING MECHANISM 295
49, ZERO-KNOWLEDGE REMOTE UPDATE SYSTEM 299
50. ADVANCED ANTI-FORENSICS LAYER 305
51. DEEP SYSTEM STEALTH ENGINE 311
52. REMOTE EVENT TRIGGER SYSTEM 315
53. PERSISTENCE ENHANCER MODULE 319
54. ADAPTIVE ANTI-FORENSICS LAYER 323
55. DYNAMIC OBFUSCATION ENGINE 327
56. SMART PERSISTENCE ENGINE 331
57. INTELLIGENT C2 HANDLER 335

58.
59.
60.
61.
62.
63.
64.
65.
66.
67.
68.
69.
70.
71.
72.
73.
74.
75.
76.
77.
78.
79.
80.
81.
82.
83.
84.
85.
86.
87.
88.
89.
90.

Table of Contents 7

DYNAMIC SENSOR DATA EXTRACTION

PEGASUS ZI0S

PEGASUSZIOS: PERSISTENCE AGENT ON I0S

DYNAMIC AVOIDANCE SYSTEMS FOR NETWORK ANALYSIS ON 10S

DYNAMIC CLOAKING OF SYSTEM TELEMETRY
SECURE AUTO-UPDATE WITH SIGNATURE VERIFICATION ON I0S

ADVANCED STEALTH PERSISTENCE MECHANISMS ON I0S

DYNAMIC CLOAKING AND ANTI-ANALYSIS TECHNIQUES ON I0S

SECURE SESSION MANAGEMENT AND OPPORTUNISTIC ENCRYPTION ON IOSccovuerureenns
HOT-LOADED MODULES MANAGEMENT ON I0S

SUPPLY CHAIN ATTACK PREPARATION MODULE ON I0S

FILELESS MALWARE EXECUTION ON I0S

REMOTE CODE EXECUTION MODULE ON I0S

339
343
347
351
355
359
365
369
375
381
385
389
393

KERNEL INTERACTION AND STEALTH EXTENSION LOADING ON IO0S......ccoummmmmmmmmmssssnnns
RESILIENT NETWORK COMMUNICATION MODULE FOR 10S

POST-EXPLOITATION LOCAL DATA COLLECTION MODULE ON 10S

SECURE PAYLOAD DELIVERY AND DECRYPTION FRAMEWORK ON IO0S.....ccccoummmmmmmmnssnssinnns
DYNAMIC PERSISTENCE HARDENING MODULE ON I0S

STEALTH CLEANUP AND SELF-DESTRUCTION MODULE ON IOS

ADVANCED ANTI-FORENSICS MODULE FOR 10S

ADVANCED REMOTE UPDATE SYSTEM FOR 10S

C2-DRIVEN LIVE TASKING MODULE ON I0S

ADVANCED LOGGING AND MONITORING SYSTEM FOR 10S

ANTI-LOCKDOWN MODE BYPASS MODULE FOR 10S

FAKE UPDATE AND SYSTEM MAINTENANCE CAMOUFLAGE MODULE FORIOS.......couuusunens
ADVANCED KERNEL EVENT MONITORING AND REACTION MODULE FOR IO0S.....ccccuuuumimnnns
STEALTH PERSISTENCE REBUILDER MODULE FOR 10S

ADAPTIVE MISSION PROFILE LOADER FOR 10S

SELF-DELETION AND SELF-RESTORATION MECHANISM FOR 10S

TIME-BASED OPERATIONAL PROFILES FOR 10S

DEGRADED MODE (LOW-PROFILE SURVIVAL MODE) FOR 10S

FULL MEMORY-ONLY OPERATION MODE FOR 10S

REMOTE WIPE TRIGGER FOR 10S

397
401
407
413
419
425
431
437
443
449
453
459

471
477
483
489
495
501
505

8 Table of Contents

91.
92,
93.
94,
95.
96.
97.
98.
99.

100.
101.
102.
103.
104.
105.
106.
107.

ADAPTIVE EXFILTRATION ROUTER FOR 10S

ANTI-FORENSICS TIMELINE CLEANER FOR 10S

ADVANCED COVERT STORAGE MODULE FOR I0S

SMART C2 SWITCHING AND REDUNDANCY FOR 10S

SELF-HEALING PERSISTENCE ENGINE FOR 10S
DEEP MEMORY INJECTION (FILELESS LOADER) FOR 10S

DISTRIBUTED C2 MESH FOR 10S

POLYMORPHIC RUNTIME OBFUSCATION FOR 10S

QUANTUM-RESISTANT C2 CHANNEL FOR 10S
AI-BASED COMMAND INTERPRETER FOR 10S

ZERO-TRUST BEHAVIORAL CLOAKING FOR 10S

STEALTH REBIRTH AFTER FACTORY RESET

REMOTE LATERAL MOVEMENT ACROSS DEVICES

ADVANCED C2 MESHED NETWORK WITH REDUNDANCY

AI-POWERED ANTI-FORENSIC SELF-DESTRUCTION MODULE
ADAPTIVE ENCRYPTED PAYLOAD DELIVERY.

BIBLIOGRAPHY

511
517
521
525
531
537
541
547
553
557
561
565
569
571
573
575
577

Part I

1. Introduction

The widespread reliance on smartphones for personal and professional activities has been
brought about by the prevalence of mobile technology, which, in turn, has resulted in new and
evolving security challenges. As one of the leading mobile platforms, iOS is equipped with a
comprehensive security architecture and strong adoption rates, and is therefore made a frequent
target for advanced cyber threats. The core research question addressed by this paper involves
the analysis of how offensive operations against iOS can be systematically modeled,
engineered, and simulated within a red team context—and which methodologies, tools, and
payload structures are most effective for achieving persistence, stealth and data exfiltration.
As it relates to 108, offensive cybersecurity is examined in this work, with a focus being given
to the intersection of mobile security, threat modeling, and red teaming. To simulate adversary
behavior and uncover vulnerabilities before they can be leveraged by hostile actors, offensive
security practices, including ethical hacking and penetration testing, are used. By exploring the
specific characteristics of i0S security mechanisms, common attacker strategies, and the
spectrum of tools and frameworks available, theoretical foundations are connected by the paper
to practical implementation. By the increasing complexity of threats directed at mobile devices
and the necessity for proactive security measures, the need for such an approach is highlighted.
A detailed reference for red teamers, security researchers, and advanced practitioners working
in mobile offensive security is provided as the primary objective of this paper. Conceptual
overviews are integrated with hands-on examples, and understanding of i0S security, threat
actor profiling, and operational red teaming is aimed to be strengthened by the study. For i0S,
red team methodology, custom payload engineering, execution of multi-phase offensive
operations, and a discussion of ethical and legal aspects relevant to mobile red teaming are
included in the scope. For those aiming to improve their expertise in offensive strategies
targeting 10S, the analysis is designed to serve as a resource.

Foundational context is combined with in-depth technical modules within the research
approach. Red team principles tailored to i0S, including reconnaissance, software architecture,

and payload delivery, are covered in the beginning segments. Through practical guidance on

10 Red Team Cybersecurity Lectures

executing offensive operations and the specifics of i10S payload engineering, this theoretical
basis is enhanced. Advanced topics such as zero-click delivery, persistence techniques that
avoid jailbreaking, remote control, surveillance payloads, data exfiltration, and anti-forensic
measures are detailed in the following sections. On offensive i0S security, a rigorous and
practical perspective is fostered, and literature review, comparative analysis, and some real-
world examples are drawn down on by the work.

A rapidly advancing field is shown by contemporary research in mobile offensive security,
with notable studies into threat modeling, malware analysis, and exploitation of vulnerabilities
on both personal and enterprise devices. The development of i0S encryption techniques, the
emergence of sophisticated spyware like Pegasus, and the documentation of sandbox and
application security have expanded the knowledge base. A unified operational framework for
offensive security requires the integration of these disparate findings—an aim addressed by
this paper’s synthesis of current methodologies and engineering practices — despite these
advances. A logical progression from foundational concepts to practical applications and
reflections is provided by the structure of the work. After establishing the context and core
question, 10S security architecture and the threat landscape are examined in the following
chapters. Following that red team methodology is detailed, reconnaissance techniques are
explored and payload delivery and engineering are analyzed. Post-exploitation practices and

anti-forensics are reviewed and, it concludes with a summary of findings and future outlook.

2. Mobile Security Architecture and Threat Landscape

For a basic comprehension of the defense and attack of mobile platforms, especially 10S,
understanding the underlying security principles and the security threat landscape is key. This
section aims to explore the system's architecture, application security, and attack targets to set

the foundation for the defensive side as well as the attack strategy in later chapters.

2.1. OS Security Model Overview

The fundamental security principles that underlie i0OS will be explored in this section, with a
focus being placed on its application isolation mechanisms, system safeguards, and hardware-
enforced protections. The grasp of the platform’s resilience against attacks and the
vulnerabilities that advanced adversaries may target is considered essential through an
understanding of these foundational elements. Critical insights are provided for both offensive
simulations and defensive strategies discussed throughout the work, situated within the broader

context of mobile security architecture.

2.1.1. Sandbox Architecture and Restrictions

i0S operates on a sandbox structure to isolate applications from each other and from the
operating system. Each app has its own container area that restricts an app’s access to other
app data and to sensitive system components. This drastically minimizes the possibility of
system-wide damages if an exploit is successful by confining an attacker to a specific app’s
container area. This allows the OS to protect system-level services and operations. Schmidt
(2015, p. 1) states that this enables developers to compartmentalize applications into separate
containers that provide isolation for runtime resources as well as the file system. Shah (2010,
p. 4) supports this, mentioning that the 10S application sandboxing system also controls direct
system calls to sensitive APIs and devices. Since an attacker cannot access the system

resources and the file system directly, they have to communicate between different app

II

12 Red Team Cybersecurity Lectures

containers through sockets or through other apps on the i0S device. This means an adversary
has to focus more on inter-container communication mechanisms rather than target file access.
The constraints imposed by Apple’s sandbox are stringent and must be taken into consideration
when building out attack chains on iOS targets. Another Apple mechanism is Mandatory
Access Controls (MAC) that prevent the loading of unsigned code or unauthorized injection
of libraries. Schmidt (2015, p. 4) mentioned that MAC on i0S is used to disable unauthorized
code injection as well as disable unauthorized execution of arbitrary code. On the system
architecture layer, the ARM CPU used by iOS devices utilizes hardware-backed No-eXecute
(NX) bit. This feature denies code execution from pages such as the stack and the heap
(Schmidt, 2015, p. 2). The ARM CPU utilizes NX Bit to harden pages containing user data,
and it prevents traditional buffer overflows by preventing code from executing in these pages.
This makes memory exploits, such as buffer overflows and ROP (Return-Oriented
Programming), highly difficult on iOS. In the past, memory exploits of this type were often
the cause of successful sandbox bypasses. With NX Bit enabled, adversaries have to explore
more complicated techniques, such as gadgets chaining or malicious use of legitimate control
flows. Further enhancing Apple’s security design, apps have to be code-signed with
cryptographic signatures before they are deployed. This prevents applications with malicious
code or other unauthorized applications from running. For example, the sandbox in
combination with code signing effectively blocks library injection and code injection (Schmidt,
2015, p. 2). All of the aforementioned security controls and mechanisms enable such an i0S
sandbox environment, making it even more difficult to escape.

Despite the many measures taken to prevent i0S sandbox escapes, there have been a number
of successful jailbreaks. These jailbreaks illustrate that state-sponsored actors and determined
attackers are able to bypass many of the restrictions that Apple's i0S enforces on applications.
Wardle (2014, p. 2) and Stewart (2014, p. 1) state that an attacker is able to obtain elevated
privileges outside the sandbox by finding an exploitable hole in a trusted system API. An
attacker can also bypass sandbox restrictions by exploiting inter-process communications,
because these mechanisms operate outside the sandbox. When there is a zero-day vulnerability,
an attacker will be able to execute commands from outside of the sandbox container.
Successful exploits of Apple security features and mechanisms, such as the ones from the

Flashback malware and OSX/Crisis rootkit, bypass many security features that attempt to

Part] 13

constrain an app to the sandbox, making them very effective at breaking into these types of
apps (Wardle, 2014, p. 7; Stewart, 2014, p. 1). All these exploits of various degrees of
sophistication allow an attacker to fully escape the i0S sandbox and execute code outside the
app container. Many of these exploits require chaining together lower-severity exploits,
illustrating a point on how effective an iOS sandbox is when properly patched. This point is
highly relevant to iOS security in red team operations, in that a lack of updates or weak
configurations can be targeted to escape the sandbox. Therefore, monitoring 10S systems and
timely application of patches is a critical defense against sandbox escapes. As red teams assess
i0S sandboxes, they must be creative in targeting vulnerabilities that lie outside the sandbox
restrictions themselves and focus on vulnerabilities within device synchronization, cloud
infrastructure, and other areas outside the sandbox perimeter. This also means avoiding file
system-based exploits, since there is limited access, and focusing on memory exploits that can
target specific components of an app running in the sandbox. Therefore, the exploitation of
APIs, communication protocols, and other aspects should be validated to be properly used, in
terms of validation and integrity of incoming and outgoing data and processes.

Even legitimate digital forensics becomes complicated in iOS devices. Since each application
container is isolated from other applications, data stored in one application container can’t be
directly accessed from another. In i0S, root privileges are required to access data outside the
sandbox perimeter (Schmidt, 2015, p. 6), but on non-jailbroken devices, this is impossible
unless a serious vulnerability can be exploited. Another challenge is that a number of files on
108, such as contacts and calendar appointments, are stored in encrypted file containers
(Schmidt, 2015, p. 6). These file containers are further hardened by unique AES hardware-
backed keys embedded inside each individual device, which renders them unreadable on any
other device. If the AES hardware keys and encrypted file containers are combined with the
sandbox in i0S devices, the contents in those containers are impossible to access without
exploitation to extract the AES hardware keys. These sandbox measures and encrypted files
also make digital forensics very challenging, and in order to conduct useful and effective digital
forensics on 10S devices, the encryption has to be bypassed using multiple exploitation
techniques and processes, such as extracting AES keys to decrypt the containers (Andriotis &
Tryfonas, 2015, p. 1). If AES key extraction is not possible, the extraction of relevant data

becomes futile due to the encryption.

14 Red Team Cybersecurity Lectures

Despite the complexity of Apple’s measures to restrict applications, the number of applications
available on Apple App Store increased tremendously. By 2010, the App Store contained over
225,000 applications, which shows the extent of Apple’s development ecosystem (Schmidt,
2015, p. 2; Shah, 2010, p. 4). While that is good for mobile app developers, it has expanded
the attack surface to thousands of new vulnerabilities since each application is unique with
different implementations, configurations, security controls, etc. The threat landscape includes
malware, ransomware, spyware, remote access trojans, etc. Apple attempts to minimize this
threat through its mandatory app review process and their uniform sandbox implementation,
in addition to requiring code signing, to ensure that malicious code isn’t added to applications
prior to deployment. Apple’s countermeasures detect unwanted deviations from normal app
behavior. However, this process doesn’t eliminate the thousands of vulnerabilities. This also
highlights how hard it is to write a payload that executes inside an i0S sandbox. In order for a
payload to work inside a sandbox environment, it needs to be a module that doesn’t modify
the program to a great degree or, even worse, that causes unintended faults in other modules
of the program. The payload has to be properly integrated so that it doesn’t create a single point
of failure within an iOS application’s code, causing other pieces to shut down with the payload.
The countermeasures and controls used by Apple effectively prevent malicious code from
running on 10S without them being detected by these checks.

Compared to i0S, Android's sandbox implementation has major limitations. The variability in
hardware and software configurations introduces differences in sandbox features and behavior,
and the fragmentation in operating systems contributes a number of vulnerabilities (Kumar,
2022, p. 22). Malware detection using Machine Learning in the Android environment has a
high success rate, but due to a lack of uniformity across the platform, many of the research and
techniques of Android cannot be used in the same way on iOS. Although Google does not
maintain any source codes or implementations of the security countermeasures of Android,
malware countermeasures are still a serious issue for both i0S and Android malware analysis.
Kumar (2022, p. 22) states that mobile red teams have to be constantly developing and
improving their tools and techniques for their campaigns to overcome the sandbox and other
countermeasures that attempt to prevent attackers from bypassing these defenses, leading to
privilege escalation or information theft from applications. Schmidt (2015, p. 2) emphasizes

the importance of continuing research in both the Android and iOS worlds in order to better

Partl 15

learn the interactions within sandbox and bypass attempts in one or both platforms. With a
larger and growing mobile sandbox ecosystem, with complex mobile applications running in
controlled environments, this requires continuous research to find new or even basic bypass
methods for sandboxes in order for the red team and pen testing efforts to achieve success and

proper simulations for iOS attacks.

2.1.2. Application Security Framework

The i0S application security framework ensures that iOS applications are built, deployed, and
executed on devices securely. For this, digital code signing, or simply signing, is used as an
integrity mechanism to assure that only verified code from Apple can run on devices. As
defined by Schmidt (2015, pp. 1-4) and Shah (2010, p. 4), it helps guarantee the uniformity of
the system. It prevents running arbitrary code, and attackers must bypass this restriction in
order to continue with the execution of a payload.

For developing applications on iOS, Objective-C is a common language of choice. Due to
Objective-C’s dynamic runtime nature, techniques like method swizzling, message
interception, and other means of memory tampering are possible and can be leveraged by
attackers. As explained by Shah (2010, p. 4), if code auditing does not address the risks inherent
to Objective-C and other dynamically typed languages, developers are more likely to introduce
security vulnerabilities in applications.

Application security often relies on memory management. For example, issues such as
dangling pointers or privilege escalation by incorrectly managing object lifetimes are possible,
and according to Shah (2010, p. 4) have also been exploited in the wild. The need for better
memory management techniques rises as a developer starts using Objective-C, because
developers may unknowingly apply unsecure principles while coding.

The code signing mechanism, alongside an application's sandbox, helps limit the impact of
such misconfigurations. Due to the requirement to sign the application package and embed
certain entitlements, the installation of unauthorized or malicious applications is prevented. As
stated by Schmidt (2015, pp. 1-2) and Shah (2010, p. 4), the signed app provides protection

against installation of a modified version of it, as long as the target device has not been

16 Red Team Cybersecurity Lectures

compromised via system or hardware vulnerabilities. This defense can provide a considerable
obstacle for red teams in gaining persistence in i0S applications or performing further actions.
App functionality and flexibility versus security is a tradeoff. Shah (2010, p. 4) writes that the
increased complexity of an application leads to trade-offs that may hurt the overall security.
Also, applications will often remove some checks or relax code-signing settings during
debugging. These are only a couple of examples of the constant struggle developers have,
while aiming for both functionality and flexibility while also maintaining security.
Applications for iOS run in sandboxes, i.e., isolated environments that are associated with
specific user accounts, which are used by the OS to track a certain application (Schmidt, 2015,
pp. 1-4). Each application is installed into a distinct sandbox, limiting interaction, and it has
its access to APIs restricted based on sandboxing policies. For this reason, inter-application
communication is significantly hindered, as well as the installation of malicious apps (Schmidt,
2015, pp. 1-4).

At the application layer, i0S imposes access controls over sensitive device features (Schmidt,
2015, pp. 1-4). To access these features, API limitations must be circumvented using exploits
within the operating system, or at the application-level. Furthermore, it ensures that
applications cannot execute background processes, or send or receive data without user
consent, preventing unauthorized information transfers (Schmidt, 2015, pp. 1-4). This
provides some reassurance that, at the application layer, the damage that a vulnerable
application can cause is limited. The restriction for background execution allows developers
to make sure that no tasks can run silently in the background and affect device security or
battery life (Schmidt, 2015, pp. 1-4). Finally, if location services are used, the applications
cannot obtain the exact location of the device without user consent (Schmidt, 2015, pp. 1-4).
These controls implemented on top of other general security and privacy policies can
contribute significantly to an overall secure environment, if correctly implemented in the
application and respected at the OS-level (Schmidt, 2015, pp. 1-4).

Sandbox policies and permission models continue to evolve, guided by lessons learned on
mobile devices. Schmidt (2015, pp. 1-4) claims that the high incidence of Android malware
stems from inconsistent application security policies and permission enforcement due to
customization of permissions by Android OEMs (Original Equipment Manufacturers). The

fact that this fragmentation is controlled and the uniformity of policies by Apple can explain

Partl 17

the lower incidence of malware in iOS devices (Schmidt, 2015, pp. 1-4). For red teams, this
policy requires a more streamlined approach to attacking an i10S device.

All of these points of this subsection are considered crucial defenses that Apple implemented,
and they help reduce the surface for attacks. They contribute to creating a secure environment
on i0OS devices and prevent many common attack techniques that have been observed in
practice. However, it has also been observed that although the technical aspects of security and
protection mechanisms are enforced at multiple levels (operating system, app store), poor
coding techniques or human factors contribute to frequent cryptographic protocol
vulnerabilities. These vulnerabilities often involve accepting expired certificates or not
verifying server certificates (Dananjaya, 2023, p. 2). The OWASP mobile security top ten
issues 2014, 2016, and 2018 include many instances of improper platform usage. When
implementing cryptographic protocols in apps, developers are responsible for not using flawed
configurations. For example, a misconfigured certificate, or implementation issues such as
relying on an outdated or insecure library, makes the data in transmission vulnerable
(Dananjaya, 2023, p. 2). Furthermore, cryptographic issues in web servers often stem from
failing to change default values after initial installations (Dananjaya, 2023, p. 2). For example,
allowing SSL 3.0 to be available for connections still poses a risk because it is easily
compromised with the POODLE exploit (Dananjaya, 2023, p. 2). However, a change can also
create more risks for a system administrator: switching from a weaker to a stronger cipher can
increase the computational load, especially during initialization, and slow down connections
from machines with weaker hardware (Dananjaya, 2023, p. 2). While they may pose risks,
these protocols offer a solid framework for encrypting sensitive data, while still permitting for
a simple transition.

As described above, device capabilities in terms of both CPU power and memory size have
improved exponentially, leading to increasingly complex payloads of malware (Delac, 2011,
p. 2). As an example, the most popular i0S-based device, the iPhone, has its clock rates ranging
from 800 MHz to more than 2 GHz (Delac, 2011, p. 2). Regarding the physical memory space,
it goes from 256 MB to 4 GB (Delac, 2011, p. 2).

With higher speed and larger RAM, attackers can run complex and resource-demanding
attacks. This means that applications also have the ability to handle and store more data. This

is a security concern, as malicious apps may send all collected data through network interfaces

18 Red Team Cybersecurity Lectures

to an attacker (Delac, 2011, p. 2). In response, mobile application security has to adapt
accordingly.

Finally, threat intelligence provides a structured way of evaluating attacks and evaluating the
effectiveness of defense strategies for mobile security frameworks such as the iOS application
security framework. The MITRE ATT&CK Mobile Matrix catalogs attack techniques with
documented instances of their execution. In addition, Zimperium (2023, p. 2) explains that it
provides mitigation strategies and countermeasures against threats to mobile operating systems
and applications. The effectiveness of an organization's security mitigation strategies may be
assessed and tested (Hubbard, 2020, p. 5). It encompasses a wide range of documented attack
techniques in a comprehensive list (Zimperium, 2023, p. 2). It maps mobile malware and
application threats to both Android and iOS platforms (Hubbard, 2020, p. 5). MITRE
ATT&CK’s knowledge base is curated from documented reports as well as actual breaches
and real incidents. By following the MITRE ATT&CK paradigm, red teams can iteratively test

mitigations.

2.1.3. System Protection Mechanisms

i0S system protection mechanisms are the culmination of hardware and software security
features. It starts with AES 256 crypto engine embedded in all i0S devices to reduce the load
on the CPU during cryptography and, as noted by Teufl et al. (2013, p. 4) and Schmidt (2015,
p. 6), decreases system latency. This proprietary AES crypto key, known as the UID key, is
created during hardware manufacturing in the embedded security element and is not software
accessible. Teufl et al. (2013, p. 4) note that this protects the system from possible key leakage.
The UID key is also used as input for other keys, such as 0x89B and 0x835, which are used
for encryption on the app and file level respectively to further compartmentalize encrypted
data (Teufl et al., 2013, p. 4). As the system’s cryptography keys are embedded at the hardware
level, physically extracting data from the phone, either by NAND mirroring or chip-off
methods, will only reveal ciphertext. Decrypting the ciphertext without the original hardware
is, according to Teufl et al. (2013, p. 4), infeasible. One other aspect of Apple’s Data Protection

system involves the use of password-based key derivation with the PBKDF2 key derivation

Part] 19

algorithm. By mixing a user’s passcode with the UID key and a cryptographic salt, the system
ensures that key derivation takes 80 milliseconds, improving defense against brute force
passcode guessing and emphasizing the importance of passcode complexity (Teufl et al., 2013,
p. 6). The PBKDF?2 algorithm iterates hashing the passcode to add entropy even for simpler
passcodes and helps to prevent mass brute force attempts. Yet short and simple passcodes are
often used, and should an attacker gain temporary physical access to a device, they could
bypass Apple’s security and crack a simple password. As Teufl et al. (2013, p. 6) point out,
this computational overhead for each brute force passcode attempt provides a challenge not
only for the attacker but also legitimate users who need forensic recovery.

The NX Bit on ARM devices is another piece of the hardware component of Apple’s security.
By marking the stack and heap as non-executable, Apple can prevent buffer overflows or
traditional shellcode injection into the device (Schmidt, 2015, p. 4). Combined with ASLR, the
increased unpredictability adds difficulty to traditional memory corruption exploitation. The
majority of exploits will need to chain multiple vulnerabilities to first bypass ASLR and then
the NX Bit. According to Schmidt (2015, p. 4), "Executing traditional memory corruption
exploits on such an environment is an extremely hard task." This being said, advanced
attackers, such as the actors behind Flashback or OSX/Crisis, have shown that zero-day chain
exploits still may work due to architectural shortcomings on Apple hardware and software
(Wardle, 2014, p. 2). In addition to hardware level system protection mechanisms, i10S also
has some powerful software defenses that help protect the system. Code signing for
applications is a hard enforcement policy that prevents any unsigned applications on iOS
devices from being able to run. All applications on iOS need to be signed, verified, and
approved by Apple to be able to be installed (Shah, 2010, p. 4). By forcing these applications
to be approved, Apple prevents the installation of traditional malware. Attackers have
difficulty distributing their software by techniques such as drive-by downloads, and users are
not able to download arbitrary third-party apps. According to Shah (2010, p. 4), attackers will
have to bypass code signing by attempting exploitation at the kernel level. Even if the attacker
attempts persistence, rootkits will need to get past Apple’s code signing. This forces the
attacker, according to Wardle (2014, p. 8), to perform advanced exploitation tactics that make
use of a stolen provisioning profile. The authors of a jailbreak for iPhone OS 3.1, Shah (2010,

p. 4) note, exploited code signing on the iPhone in addition to using privilege escalation to get

20 Red Team Cybersecurity Lectures

their application to run on the phone. After Apple was informed, this vulnerability was quickly
fixed in a patch.

This patching procedure is also handled at a hardware level. As Apple controls the hardware
for i0S devices, they are able to provide updates to a variety of phones easily. This update
patch is sent to all of Apple’s supported hardware so that they all have the latest protection
from malware authors and any other security exploits found out in the wild by security
researchers or Apple themselves. By having all of the devices having the newest software,
Wardle (2014, p. 1) remarks that this reduces the window of opportunity for attackers to
execute zero-days in the wild. Zhou et al. (2025, p. 2) indicate that zero-day authors need to
continuously invent new exploits due to their short shelf life. This hardware enforcement that
supports timely patch release is a significant feature that contrasts with the fragmentation on
other mobile operating systems, such as Android. Nonetheless, Wardle (2014, p. 1) argues that
the weakest link still lies with users, who are slow to update their software even when
prompted. Since updating to newer iOS versions, users leave their devices open to the newest
exploits, malware, and vulnerabilities to enter in the wild. All of this security research would
be ineffective if users do not update their devices to the latest version.

While Apple has made large strides in the advancement of its security, there still remains a
challenge of providing this robust security for forensic researchers and the offensive security
community. Hardware-backed encryption, combined with application sandboxing and code
signing, according to Schmidt (2015, p. 6), causes for security attacks to have multiple layers.
This results in the failure of traditional post-mortem forensics and live forensics due to
encrypted application data and logs as well as limited inter-process communication on the
operating system. These limitations, according to Pontiroli and Martinez (2015, p. 11), give
incentive for security attackers to innovate their methodology by utilizing encrypted
communication channels, runtime code obfuscation, and anti-forensic analysis measures in an
attempt to evade defense. With attackers innovating, the defensive security community is
forced to adapt their techniques accordingly by employing security measures that are reactive
(Pontiroli & Martinez, 2015, p. 11).

Ultimately, Apple’s hardware and software security measures are aimed at limiting attackers
to having only a few chances to bypass its defenses, forcing them to spend the time and

resources necessary to research and design bypass strategies. With this limitation and Apple’s

