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PREFAZIONE

La matematica ¢ efficace nel costruire delle rappresentazioni del
mondo reale. Galileo sosteneva che la natura ¢ scritta in linguaggio ma-
tematico. La Matematica si rileva efficace anche nelle descrizioni delle
Scienze naturali, da alcuni studiosi detta “Matematica della vita”. La
rivoluzione tecnologica che stiamo vivendo ¢ 'applicazione della mate-
matica attraverso l'informatica, nelle sue varie manifestazioni: intelli-
genza artificiale, scienza dei dati, matematica nelle scienze umane, ecc.

Purtroppo non vi ¢ in Italia una buona percezione della
Matematica, nonostante I’Italia abbia dato i natali ad Archimede,
considerato il pili grande matematica dell’era antica; a Galileo, precur-
sore della Meccanica di Newton; a Fibonacci, che oltre alle tante opere
di Algebra e Geometria, introdusse i numeri indo-arabi in Europa; a
Peano, studioso di Logica, Calcolo infinitesimale e di tanto altro. Non
¢ raro sentire qualcuno dire quasi con orgoglio: “Io di Matematica non
ho mai capito niente”.

Oggi la matematica si occupa di tante cose, le ricerche
proseguano anche nello studio della “Matematica astratta”, la
quale si potra rivelare proficua nelle applicazioni future. Spesso
si trovano relazioni inattese fra branche della Matematica, a
prima vista assai distanti fra loro, e relazioni fra Matematica e le
Scienze da essa lontane. E questo ¢ il miracolo della Matematica.

Questo testo di matematica generale copre argomenti di
base dell'analisi, di geometria analitica, fornendo le fondamenta
per discipline piu specializzate. Ecco una suddivisione dettagliata
degli argomenti:

Pri

1. Numeri e sistemi numerici: Numeri naturali, relativi,
razionali, reali, complessi.

2. Insiemi: Operazioni sugli insiemi, applicazioni, rela-
zioni binarie, strutture.
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3. Logica matematica: Linguaggi proposizionali, connet-
tivi, quantificatori, dimostrazioni formali.

4. Geometria analitica: Coordinate cartesiane, retta, iper-
bole, parabola, ellisse, circonferenza, funzioni espo-
nenziali

N

Algebra lineare: Matrici e determinanti, sistemi lineari.

6. Funzioni reali di una variabile reale: Definizioni, rap-
presentazione geometrica, limiti, continuitd, derivate,
integrali.

7. Calcolo differenziale: Derivate, applicazioni.

®

Calcolo integrale: Integrale indefinito, integrale defi-
nito, significato geometrico, cenni sugli integrali im-
propri, Cenni si equazioni differenziali.

Questo testo ¢ particolarmente indicato per corsi di matematica
generale per le facolta di Economia, Biologia, Scienze, Ingegne-
ria.
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L CALCOLO DEI LIMITI

Nella parte prima del testo ci siamo occupati della definizione dei vari
tipi di limite e della verifica dell’esattezza o meno del limite. Nulla ¢
stato detto sul modo di calcolare un limite. In questa seconda parte ci
occuperemo delle tecniche relative al loro calcolo, al calcolo delle deri-
vate e degli integrali e allo studio di funzioni.

Funzioni continue e discontinue

Consideriamo una funzione y = f(x) e sia A il suo dominio. Sia xy E A
e di accumulazione per A, cio significa che in ogni intorno di x, per

quanto piccolo, cadono infiniti punti di A. Ha senso quindi calcolare
il Lim f (x) eilvalore della funzione f(x().

xX—= X,

Diremo che una tunzione é continua in x o 5€ il limite e la

funzione in x , 010 uguali, se risulta cioé:

Lim f(x) = f(x,)

X— X

In tutti gli altri casi la funzione si dice discontinua in x .

Applicando la definizione di limite finito in un punto finito per / =
f(x,) possiamo anche dire che:

una funzione ¢ continua nel punto x, se comunque scelto

un numero € > 0 (piccolo a piacere), é possibile trovare in
corrispondenza a tale numero un intorno I(x,) tale che ri-

sulti: fix ) - € < fix) < fix,) + & per ogni x E1(x,)

Esempio

13
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Sia f (x) = (3x + 2) che ha per dominio I'insieme R. Il punto x = 2
appartiene al dominio ed ¢ di accumulazione. Abbiamo verificato
nell’esempio che Li"12 (3x + 2) = 8 ;risulta anche f(2) =32 + 2 =

8. Possiamo concludere che la funzione ¢ continua in x = 2 perché si

ha:
Lim (3x+2) = £(2)

dal punto di vista grafico, dire che una funzione ¢ continua in %) signi-
fica che ¢ possibile tracciare il suo grafico nell’'intorno di x() con conti-

nuitd, senza cio¢ “staccare la mano dal foglio™:

Casi di discontinuita
Discontinuita di prima specie

Se esiste il limite sinistro, esiste il limite destro e sono diversi fra
di loro:

Lim f(x) =1 Lim f(x)=1, [, =1,

X=X, X=X+

Vv

La differenza /i — 4 si dice salto della funzione.
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Discontinuita di seconda specie

Una funzione presenta una discontinuita di seconda specie in un
punto quando, almeno uno dei limiti destro o sinistro in quel punto, ¢
infinito o non esiste. In altre parole, la funzione "sale" o "scende” verso
l'infinito, oppure non ha un comportamento ben definito in avvicina-
mento al punto. Il seguente grafico ¢ un esempio.

Lim f(x) =1, Lim f(x)=1,, [ =1,

X—= xq X—> Xo+

v
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Esempio

1
La funzione f(x)= 1 nel punto x = 1 ha una discontinuita

di seconda specie, perché risulta:

Lim f(x) =+, Li’l/”l f(x)=-00

x—1*

‘q

L+
|
—t
|
-
.
o
w4
-

Discontinuita eliminabile o di terza specie

Esiste il limite, il valore della funzione puo esistere oppure no,
ma se esiste sono diversi fra loro:

Lim f(x)=1= f(x,)

X Xg=

A\
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E eliminabile perché ¢ possibile definire una nuova funzione del

tipo:
_Jf(x) per x=x,
y(x)—{l per X=X,
Esempio
. 1 1 .
Sia f(x) = sen| — |; posto y=— si ha
X X

. 1 . , .
Lim sen (— = Lim sen yche non esiste perché il senno

x—0" X y =+ ®

oscillada-1a+1

17

Diremo che ¢ continua in un insieme A se ¢ continua in ogni punto

di A.

-10 -8 -6 = -2 0 2 A — 6 8

-4
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Calcolo dei limiti
Esempio
Sia f(x) = (3x + 2) che ha per dominio l'insieme R. Il
punto x = 2 appartiene al dominio ed ¢ di accumulazione. Ab-
biamo verificato nell’esempio che L in»é (3x + 2) = 8 1i-

sulta anche f{2) = 3-2 + 2 = 8. Possiamo concludere che la fun-
zione ¢ continua in x = 2 perché si ha:

Lim (3x+2) = [(2)

dal punto di vista grafico, dire che una funzione ¢ continua in
x() significa che ¢ possibile tracciare il suo grafico nell’intorno

di x. con continuita, senza cio¢ “staccare la mano dal foglio”:
0 g

Il concetto di funzione continua ci apre la strada all’introdu-
zione delle tecniche di calcolo dei limiti, infatti se si sa che una
funzione ¢ continua x(), il calcolo del limite si esegue semplice-

mente sostituendo nella funzione alla variabile x il punto x.

Resta quindi il problema di stabilire se una funzione ¢ continua.
A tale scopo ci avvarremo di teoremi opportuni.
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Limiti fondamentali

Chiamiamo limiti fondamentali alcuni limiti che servono come base
per il calcolo di altri limiti pitt complessi.

limite della funzione costante f(x) = k

Lim (k +0-x) =k

X =X,
Il termine 0-x ¢ stato aggiunto per evidenziare che anche la fun-
zione costante dipende dalla variabile x.

Il suo grafico ¢ una retta parallela all’asse delle x:

Poiché f(x) = £ per qualunque valore x, possiamo concludere

Lim k = k . Ad esempio Lin;l 5=5

X =X

Volendo dimostrare tale limite applicando la definizione dobbiamo far
vedere che la disequazione | fi(x)-1 | < & risulta verificata in un intorno
di x(), per qualunque . Poiché f(x) = k ed | = k, sostituendo si ottiene
| k - k| <& = 0 < & che risulta sempre vera e quindi anche in un

qualunque intorno di x,.

limite della funzione identita f(x) = x

Lim x=x,

X — X0

Si chiama funzione identitd perché la funzione assume il valore della
variabile indipendente, cio¢ ascissa uguale ordinata. Il suo grafico ¢ la
bisettrice del primo e terzo quadrante x:
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f(x)

X0

/ XO X

Poiché f{x)) = x, per qualunque valore x (finito o infinito) possiamo

concludere Lim x = x,. Ad esempio Lim x =5

X =X x =5

Per una dimostrazione rigorosa dobbiamo far vedere che la di-

sequazione | fix) -1 | < & risulta verificata in un intorno di x o

per qualunque € > 0. Sostituendo f(x) = x ed /= x, si ottiene:

X=X, <+E€ X<Xx,+é&
|><—><0|<6:> =
X—Xx,>—¢€ X>Xx,—€&

La funzione costante e la funzione identita sono funzioni continue in
qualunque punto del loro dominio perché verificano la definizione:

Lim f(x) = f(xy)

X =X






