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PPRREEFAAZZIIOONNEE    
La matematica è efficace nel costruire delle rappresentazioni del 

mondo reale. Galileo sosteneva che la natura è scritta in linguaggio ma-
tematico. La Matematica si rileva efficace anche nelle descrizioni delle 
Scienze naturali, da alcuni studiosi detta “Matematica della vita”. La 
rivoluzione tecnologica che stiamo vivendo è l’applicazione della mate-
matica attraverso l'informatica, nelle sue varie manifestazioni: intelli-
genza artificiale, scienza dei dati, matematica nelle scienze umane, ecc. 

Purtroppo non vi è in Italia una buona percezione della 
Matematica, nonostante l’Italia abbia dato i natali ad Archimede, 
considerato il più grande matematica dell’era antica; a Galileo, precur-
sore della Meccanica di Newton; a Fibonacci, che oltre alle tante opere 
di Algebra e Geometria, introdusse i numeri indo-arabi in Europa; a 
Peano, studioso di Logica, Calcolo infinitesimale e di tanto altro. Non 
è raro sentire qualcuno dire quasi con orgoglio: “Io di Matematica non 
ho mai capito niente”.  

Oggi la matematica si occupa di tante cose, le ricerche 
proseguano anche nello studio della “Matematica astratta”, la 
quale si potrà rivelare proficua nelle applicazioni future. Spesso 
si trovano relazioni inattese fra branche della Matematica, a 
prima vista assai distanti fra loro, e relazioni fra Matematica e le 
Scienze da essa lontane.  È questo è il miracolo della Matematica.   

Questo testo di matematica generale copre argomenti di 
base dell'analisi, di geometria analitica, fornendo le fondamenta 
per discipline più specializzate. Ecco una suddivisione dettagliata 
degli argomenti: 

Pri 

1. Numeri e sistemi numerici: Numeri naturali, relativi, 
razionali, reali, complessi. 

2. Insiemi: Operazioni sugli insiemi, applicazioni, rela-
zioni binarie, strutture. 

PREFAZIONE
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3. Logica matematica: Linguaggi proposizionali, connet-
tivi, quantificatori, dimostrazioni formali. 

4. Geometria analitica: Coordinate cartesiane, retta, iper-
bole, parabola, ellisse, circonferenza, funzioni espo-
nenziali  

5. Algebra lineare: Matrici e determinanti, sistemi lineari. 
6. Funzioni reali di una variabile reale: Definizioni, rap-

presentazione geometrica, limiti, continuità, derivate, 
integrali. 

7. Calcolo differenziale: Derivate, applicazioni. 
8. Calcolo integrale: Integrale indefinito, integrale defi-

nito, significato geometrico, cenni sugli integrali im-
propri, Cenni si equazioni differenziali.  

Questo testo è particolarmente indicato per corsi di matematica 
generale per le facoltà di Economia, Biologia, Scienze, Ingegne-
ria. 

  

10  Prefazione



 

3. Logica matematica: Linguaggi proposizionali, connet-
tivi, quantificatori, dimostrazioni formali. 

4. Geometria analitica: Coordinate cartesiane, retta, iper-
bole, parabola, ellisse, circonferenza, funzioni espo-
nenziali  

5. Algebra lineare: Matrici e determinanti, sistemi lineari. 
6. Funzioni reali di una variabile reale: Definizioni, rap-

presentazione geometrica, limiti, continuità, derivate, 
integrali. 

7. Calcolo differenziale: Derivate, applicazioni. 
8. Calcolo integrale: Integrale indefinito, integrale defi-

nito, significato geometrico, cenni sugli integrali im-
propri, Cenni si equazioni differenziali.  

Questo testo è particolarmente indicato per corsi di matematica 
generale per le facoltà di Economia, Biologia, Scienze, Ingegne-
ria. 

  

 
 

 

 

 

 

  

Prefazione  11





 

 

I. Il Calcolo dei Limiti 

Nella parte prima del testo ci siamo occupati della definizione dei vari 
tipi di limite e della verifica dell’esattezza o meno del limite. Nulla è 
stato detto sul modo di calcolare un limite. In questa seconda parte ci 
occuperemo delle tecniche relative al loro calcolo, al calcolo delle deri-
vate e degli integrali e allo studio di funzioni.  
 

FFuunnzziioonnii  ccoonnttiinnuuee  ee  ddiissccoonnttiinnuuee  

Consideriamo una funzione y = f(×) e sia A il suo dominio. Sia ×0 ∈ A 

e di accumulazione per A, ciò significa che in ogni intorno di ×0, per 
quanto piccolo, cadono infiniti punti di A. Ha senso quindi calcolare 
il L im f x

x x→ 0

( )  e il valore della funzione f(×0). 

 
Diremo che una funzione è ccoonnttiinnuuaa in ×

0
 se il limite e la 

funzione in ×
0
 sono uguali, se risulta cioè: 

L im f x f x
x x→

=
0

0( ) ( )  

In tutti gli altri casi la funzione si dice ddiissccoonnttiinnuuaa in ×0.  

 
Applicando la definizione di limite finito in un punto finito per l = 

f(×
0
) possiamo anche dire che: 

 
una funzione è ccoonnttiinnuuaa nel punto ×0 se comunque scelto 

un numero ε >  0 (piccolo a piacere), è possibile trovare in 

corrispondenza a tale numero un intorno I(×0) tale che ri-

sulti: f(×0) - ε < f(×) < f(×0) + ε per ogni × ∈ I(×
0
) 

EEsseemmppiioo  
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Sia ( ) ( 3 2 )f x x= + che ha per dominio l’insieme R. Il punto × = 2 
appartiene al dominio ed è di accumulazione. Abbiamo verificato 
nell’esempio che 

2
(3 2 ) 8

x
L im x

→
+ = ; risulta anche f(2) = 3·2 + 2 = 

8. Possiamo concludere che la funzione è continua in × = 2 perché si 
ha: 

2
( 3 2 ) ( 2 )

x
L i m x f

→
+ =  

dal punto di vista grafico, dire che una funzione è continua in ×0 signi-

fica che è possibile tracciare il suo grafico nell’intorno di ×0 con conti-

nuità, senza cioè “staccare la mano dal foglio”: 
 

Casi di discontinuità 

DDiissccoonnttiinnuuiittàà  ddii  pprriimmaa  ssppeecciiee  

Se esiste il limite sinistro, esiste il limite destro e sono diversi fra 
di loro: 

2121 )()(
00

lllxfLimlxfLim
xxxx

≠==
+− →→

 

 
 
 
 
 
 
 
 
 
 
 
 
 
La differenza l1 – l2 si dice salto della funzione.  

l2 

l1
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Sia ( ) ( 3 2 )f x x= + che ha per dominio l’insieme R. Il punto × = 2 
appartiene al dominio ed è di accumulazione. Abbiamo verificato 
nell’esempio che 

2
(3 2 ) 8

x
L im x

→
+ = ; risulta anche f(2) = 3·2 + 2 = 

8. Possiamo concludere che la funzione è continua in × = 2 perché si 
ha: 

2
( 3 2 ) ( 2 )

x
L i m x f

→
+ =  

dal punto di vista grafico, dire che una funzione è continua in ×0 signi-

fica che è possibile tracciare il suo grafico nell’intorno di ×0 con conti-

nuità, senza cioè “staccare la mano dal foglio”: 
 

Casi di discontinuità 

DDiissccoonnttiinnuuiittàà  ddii  pprriimmaa  ssppeecciiee  

Se esiste il limite sinistro, esiste il limite destro e sono diversi fra 
di loro: 

2121 )()(
00

lllxfLimlxfLim
xxxx

≠==
+− →→

 

 
 
 
 
 
 
 
 
 
 
 
 
 
La differenza l1 – l2 si dice salto della funzione.  

l2 

l1

 

  

  

DDiissccoonnttiinnuuiittàà  ddii  sseeccoonnddaa  ssppeecciiee  

Una funzione presenta una discontinuità di seconda specie in un 
punto quando, almeno uno dei limiti destro o sinistro in quel punto, è 
infinito o non esiste. In altre parole, la funzione "sale" o "scende" verso 
l'infinito, oppure non ha un comportamento ben definito in avvicina-
mento al punto.  Il seguente grafico è un esempio. 

00

1 2 1 2( ) , ( ) ,
x xx x

Lim f x l Lim f x l l l
− +→→

= = ≠     
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EEsseemmppiioo  

La funzione 
1

( )
1

f x
x

=
−

 nel punto x = 1 ha una discontinuità 

di seconda specie, perché risulta:  

1 1

( ) , ( )
x x

Lim f x Lim f x
+ −→ →

= +∞ = −∞  

  

DDiissccoonnttiinnuuiittàà  eelliimmiinnaabbiillee  oo  ddii  tteerrzzaa  ssppeecciiee  

Esiste il limite, il valore della funzione può esistere oppure no, 
ma se esiste sono diversi fra loro:  

0

0( ) ( )
x x
L im f x l f x

±→
= ≠  

 

 

 

 

 

f(X0) 

x0 

l 
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EEsseemmppiioo  

La funzione 
1

( )
1

f x
x

=
−

 nel punto x = 1 ha una discontinuità 

di seconda specie, perché risulta:  

1 1

( ) , ( )
x x

Lim f x Lim f x
+ −→ →

= +∞ = −∞  

  

DDiissccoonnttiinnuuiittàà  eelliimmiinnaabbiillee  oo  ddii  tteerrzzaa  ssppeecciiee  

Esiste il limite, il valore della funzione può esistere oppure no, 
ma se esiste sono diversi fra loro:  

0

0( ) ( )
x x
L im f x l f x

±→
= ≠  

 

 

 

 

 

f(X0) 

x0 

l 

 

È eliminabile perché è possibile definire una nuova funzione del 
tipo: 
 





=
≠

=
0

0)(
)(

xxperl

xxperxf
xy  

 
EEsseemmppiioo  

Sia 





=

x
senxf

1
)( ; posto 

x
y

1
=  si ha 

ysenLim
x

senLim
yx ∞+→→

=







+

1

0

che non esiste perché il senno 

oscilla da -1 a + 1 
 
Diremo che è continua in un insieme A se è continua in ogni punto 
di A. 
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CCaallccoolloo  ddeeii  lliimmiittii  
EEsseemmppiioo  
Sia ( ) ( 3 2 )f x x= + che ha per dominio l’insieme R. Il 
punto × = 2 appartiene al dominio ed è di accumulazione. Ab-
biamo verificato nell’esempio che 

2
( 3 2 ) 8

x
L i m x

→
+ = ri-

sulta anche f(2) = 3·2 + 2 = 8. Possiamo concludere che la fun-
zione è continua in × = 2 perché si ha: 
 

2
( 3 2 ) ( 2 )

x
L i m x f

→
+ =  

 
dal punto di vista grafico, dire che una funzione è continua in 
x0 significa che è possibile tracciare il suo grafico nell’intorno 

di ×0 con continuità, senza cioè “staccare la mano dal foglio”: 

 
Il concetto di funzione continua ci apre la strada all’introdu-
zione delle tecniche di calcolo dei limiti, infatti se si sa che una 
funzione è continua ×0, il calcolo del limite si esegue semplice-

mente sostituendo nella funzione alla variabile × il punto ×0. 

Resta quindi il problema di stabilire se una funzione è continua. 
A tale scopo ci avvarremo di teoremi opportuni.  
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CCaallccoolloo  ddeeii  lliimmiittii  
EEsseemmppiioo  
Sia ( ) ( 3 2 )f x x= + che ha per dominio l’insieme R. Il 
punto × = 2 appartiene al dominio ed è di accumulazione. Ab-
biamo verificato nell’esempio che 

2
( 3 2 ) 8

x
L i m x

→
+ = ri-

sulta anche f(2) = 3·2 + 2 = 8. Possiamo concludere che la fun-
zione è continua in × = 2 perché si ha: 
 

2
( 3 2 ) ( 2 )

x
L i m x f

→
+ =  

 
dal punto di vista grafico, dire che una funzione è continua in 
x0 significa che è possibile tracciare il suo grafico nell’intorno 

di ×0 con continuità, senza cioè “staccare la mano dal foglio”: 

 
Il concetto di funzione continua ci apre la strada all’introdu-
zione delle tecniche di calcolo dei limiti, infatti se si sa che una 
funzione è continua ×0, il calcolo del limite si esegue semplice-

mente sostituendo nella funzione alla variabile × il punto ×0. 

Resta quindi il problema di stabilire se una funzione è continua. 
A tale scopo ci avvarremo di teoremi opportuni.  
   

 
 

 

Limiti fondamentali 

Chiamiamo limiti fondamentali alcuni limiti che servono come base 
per il calcolo di altri limiti più complessi. 
 
lliimmiittee  ddeellllaa  fuunnzziioonnee  ccoossttaannttee  f((××))  ==  kk    
Lim k x k
x x→

+ ⋅ =
0

0( )  

Il termine 0·× è stato aggiunto per evidenziare che anche la fun-
zione costante dipende dalla variabile ×. 
 
Il suo grafico è una retta parallela all’asse delle ×: 
 
Poiché f(×) = k per qualunque valore ×0 possiamo concludere 

Lim k k
x x→

=
0

. Ad esempio Lim
x →

=
3

5 5  

 
Volendo dimostrare tale limite applicando la definizione dobbiamo far 
vedere che la disequazione f(×)-l < ε  risulta verificata in un intorno 
di ×0, per qualunque  . Poiché f(×) = k ed l = k, sostituendo si ottiene 

k - k < ε     0 < ε  che risulta sempre vera e quindi anche in un 
qualunque intorno di x0. 

  
lliimmiittee  ddeellllaa  fuunnzziioonnee  iiddeennttiittàà  f((××))  ==  ××  

0
0

xxLim
xx

=
→

 

Si chiama funzione identità perché la funzione assume il valore della 
variabile indipendente, cioè ascissa uguale ordinata. Il suo grafico è la 
bisettrice del primo e terzo quadrante ×: 
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Poiché f(×0) = ×0 per qualunque valore ×0 (finito o infinito) possiamo 

concludere Lim x x
x x→

=
0

0 . Ad esempio Lim x
x →

=
5

5  

 
Per una dimostrazione rigorosa dobbiamo far vedere che la di-
sequazione f(×) - l< ε  risulta verificata in un intorno di ×0, 

per qualunque ε > 0. Sostituendo f(×) = × ed l = ×0, si ottiene: 

 

× - ×0 < ε  
x x

x x

x x

x x

− < +

− > −






< +

> −





0

0

0

0

ε

ε

ε

ε
 

 
  
La funzione costante e la funzione identità sono funzioni continue in 
qualunque punto del loro dominio perché verificano la definizione: 

0

0( ) ( )
x x
Lim f x f x

→
=  

   

x0 

f(x) 

x x0 
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