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Introduzione 
 
 

 
La verità pura e semplice è raramente pura e non è mai semplice. 

Oscar Wilde 
 

Scopo di questo libro è offrire un panorama sistematico, non superfi-
ciale, sulle cicloaddizioni 1,3-dipolari ai dottorandi ed ai giovani ri-
cercatori che operano nel campo delle reazioni pericicliche, nonché 
agli studenti dei corsi superiori di Chimica ad indirizzo organico. 

La materia è stata ripartita in sei capitoli nei quali si introducono: 
gli aspetti generali e meccanicistici relativi alle cicloaddizioni 1,3-di-
polari (Cap. 1), la chimica delle cicloaddizioni 1,3-dipolari intermole-
colari (Cap. 2) ed intramolecolari (Cap. 3), le cicloaddizioni 1,3-
dipolari stereoselettive (Cap. 4, 5) e le applicazioni sintetiche delle ci-
cloaddizioni 1,3-dipolari (Cap. 6). Chiude il libro una breve rassegna 
della letteratura generale riguardante le cicloaddizioni [3+2] (Cap. 7). 
Nonostante la presenza di centinaia di riferimenti alla letteratura pri-
maria, un libro di queste dimensioni non può certo pretendere di tratta-
re in modo esauriente l’intero campo delle cicloaddizioni 1,3-dipolari. 
Alcuni argomenti importanti, che riguardano le cicloreversioni, i com-
posti mesoionici e le applicazioni alle scienze Biologiche, sono stati 
solo accennati. Mentre i primi due argomenti risultano distribuiti lun-
go il testo per assecondarne l’impostazione, per le applicazioni a carat-
tere più spiccatamente biologico si ritiene preferibile rimandare il let-
tore a monografie specifiche. Le “formal 1,3-dipolar cycloadditions” 
sono state solo accennate dato che il loro decorso meccanicistico esula 
completamente da quello delle cicloaddizioni 1,3-dipolari. 

Ringrazio mia moglie Giulia per il suo costante incoraggiamento e, 
ancora una volta, la pazienza dimostrata nei miei confronti. 

Dei molti errori certamente presenti nonostante le numerose revi-
sioni e riletture, solo l’autore può farsi carico. 
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Capitolo I 
 

Aspetti generali 
 

 
 
 

1.1. Introduzione 
 
Le cicloaddizioni sono reazioni termiche o fotochimiche nelle quali si 
ravvisa la formazione di un anello carbo- od eterociclico a partire da 
precursori aciclici.1 Le cicloaddizioni termiche avvengono attraverso 
uno stato di transizione aromatico secondo Hückel che implica la par-
tecipazione di (4n + 2) elettroni π, quelle in cui partecipano 4n elettro-
ni π si possono invece verificare per attivazione fotochimica.2 In una 
cicloaddizione il numero dei legami σ aumenta a spese del numero di 
legami π preesistenti; il numero dei nuovi legami σ che si formano in 
luogo di tali legami π suggerisce un criterio utile alla classificazione 
delle cicloaddizioni nell’ambito delle reazioni pericicliche. In una ci-
cloaddizione si formano due nuovi legami σ a spese di due legami π 
mentre, ad esempio, le reazioni in cui si ha conversione di un legame 
π in un legame σ sono reazioni elettrocicliche.3 
 

 
 

In base alla classificazione suggerita dalle regole di Woodward-
Hoffmann, le reazioni di Diels-Alder sono cicloaddizioni [π4S + π2S] 
permesse termicamente.4 Questa notazione indica che il frammento 
dienico, π4, e quello dienofilo, π2, si combinano in modo suprafaccia-
le. Le cicloaddizioni si possono anche classificare in base alle dimen-
sioni dell’anello che si forma.5 Una reazione di Diels-Alder è un pro-
cesso [4 + 2]; ciò significa che i due reagenti contribuiscono alla for-
mazione dell’anello a sei termini con frammenti a quattro ed a due 
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atomi di carbonio, rispettivamente il diene ed il dienofilo. La notazio-
ne entro parentesi quadrata indica dunque il numero degli atomi, coin-
volti nella cicloaddizione, di ogni singolo reagente. La stessa reazione 
può essere considerata un processo (4π + 2π), dove la notazione entro 
parentesi tonda indica il numero degli elettroni π dei singoli reagenti 
che prendono parte alla cicloaddizione. Questi tre criteri di classifica-
zione sono riassunti nello Schema 1 e si possono estendere a qualsiasi 
reazione di cicloaddizione. Le cicloaddizioni 1,3-dipolari si possono 
dunque designare come processi [π4S + π2S], [3 + 2] o (4π + 2π). 
 

 
 
Schema 1. Classificazione di alcune reazioni di cicloaddizione. 
 

I primi esempi di cicloaddizioni 1,3-dipolari risalgono alla fine del 
XIX secolo. L’azione del diazoacetato di metile sull’acrilato di metile 
fu descritta da Buchner nel 1893.6 Nel 1894 Von Pechman preparò il 
diazometano e lo fece reagire col dimetilfumarato ottenendo un addot-
to pirazolinico.7 Oltre ai diazocomposti, al termine dell’Ottocento fu-
rono preparati alcuni altri 1,3-dipoli (azidi, nitroni, nitrilossidi) e fu 
sperimentata la loro reattività nei confronti di composti contenenti le-
gami multipli. Nel secolo scorso la scuola Italiana ha apportato un no-
tevole contributo nella chimica dei nitrilossidi, dimostrandosi peraltro 
molto attiva nel campo della sintesi di sistemi eterociclici.8 Nel 1938 
apparve la prima rassegna sul comportamento dei diazolacani, dei ni-
troni e di altre specie “capaci di dare addizione 1,3”.9 Da questi pochi 
esempi storici appare evidente che i primi approcci alla chimica delle 
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cicloaddizioni 1,3-dipolari sono tutt’altro che recenti. Tuttavia si do-
vette attendere fino agli anni ’60 del XX secolo per giungere alla 
comprensione soddisfacente del decorso meccanicistico delle cicload-
dizioni 1,3-dipolari10 e per iniziare ad utilizzare proficuamente le loro 
potenzialità sintetiche.11 Il raggiungimento di questi obiettivi fu rea-
lizzato soprattutto grazie al fondamentale apporto dato da Rolf Hui-
sgen dell’Università di Monaco,1,2,10,11 cui è peraltro dovuta la classi-
ficazione sistematica delle specie 1,3-dipolari.11 La regioselettività 
delle cicloaddizioni 1,3-dipolari fu chiarita indipendentemente da 
Houk12,13 e Bastide,14,15 nel 1973, sulla base della teoria dell’orbitale di 
frontiera. Quello della regioselettività si era presentato fino ad allora 
come un problema di importanza cruciale, che era rimasto pressoché 
incomprensibile, limitando fortemente l’interpretazione corretta del 
decorso meccanicistico delle cicloaddizioni 1,3-dipolari. Attualmente 
le principali linee di sviluppo connesse alla chimica delle cicloaddi-
zioni 1,3-dipolari sono rivolte alle loro applicazioni sintetiche, con 
particolare riferimento alla realizzazione di processi stereoselettivi ed 
alla sintesi totale di prodotti naturali o di interesse biologico.16 Oltre ai 
progressi in campo sintetico si registrano continui sviluppi teorici, 
permessi da nuovi approcci computazionali e velocità di calcolo un 
tempo inimmaginabili.17 

 
 
1.2. Specie 1,3-dipolari 
 
Un 1,3-dipolo è un sistema isoelettronico con l’allil (o propargil) 
anione, che distribuisce i suoi quattro elettroni π su tre atomi contigui 
di cui almeno uno è un eteroatomo. I quattro elettroni π sono condivisi 
dall’orbitale molecolare tricentrico che deriva dalla sovrapposizione 
dei tre orbitali atomici paralleli pz. Si possono avere 1,3-dipoli di tipo 
allilico oppure propargilico-allenilico (Figura 1). 

Lo stato fondamentale di un generico 1,3-dipolo allilico costituito 
dai tre atomi a,b,c può essere descritto, per mezzo della teoria del le-
game di valenza, dalle formule di risonanza 1-4. Si nota come sia im-
possibile scrivere la struttura di un 1,3-dipolo facendo a meno di im-
piegare formule a cariche separate. Le strutture limite 1 e 4 sono a se-
stetto elettronico sugli atomi a oppure c, che possono quindi avere ca-
rattere sia elettrofilo sia nucleofilo al contrario degli atomi terminali 
dell’allilanione, che possono essere solo nucleofili. Le strutture limite 
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2 e 3, in cui la carica positiva è localizzata sull’atomo centrale b, sono 
invece ad ottetto elettronico. 
 

 
 
 

 
 
Figura 1. 1,3-Dipoli allilici e propargilici: confronto con l’allilanione ed il propargi-
lanione. 
 

Nell’ambito della classificazione generale proposta da Huisgen,2,11 
le specie 1,3-dipolari si dividono in due categorie: 
 
- 1,3-dipoli con stabilizzazione dell’ottetto (1,3-dipoli allilici e pro-

pargilici-allenilici), 
- 1,3-dipoli privi della stabilizzazione dell’ottetto. 
 

Nelle specie 1,3-dipolari con stabilizzazione dell’ottetto, ciascuno 
degli atomi a,b,c può raggiungere la configurazione elettronica stabile, 
cioè ad ottetto chiuso, propria del gas nobile che lo segue nel sistema 
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periodico. Rispetto agli 1,3-dipoli di tipo allilico, quelli di tipo pro-
pargilico-allenilico possiedono un secondo orbitale molecolare π per-
pendicolare all’orbitale tricentrico del sistema allilico; l’atomo b degli 
1,3-dipoli di tipo propargilico-allenilico è quindi ibridizzato sp. Rias-
sumendo, tra gli 1,3-dipoli con stabilizzazione dell’ottetto si distin-
guono: 
 
(i) 1,3-dipoli privi del legame π perpendicolare al sistema allilico (si-

stemi allilici); 
(ii) 1,3-dipoli dotati di un legame π perpendicolare al sistema allilico 

(sistemi propargilici/allenilici). 
 

Gli esempi rappresentativi delle principali specie 1,3-dipolari ap-
partenenti alle classi (i) e (ii) sono mostrati, rispettivamente, nelle Ta-
belle 1 e 2. I sistemi di tipo allilico sono ulteriormente classificabili, 
secondo l’ordine proposto dalla Tabella 1, nelle betaine di azometinio, 
azonio, carbossonio, nitrosonio, ossonio, e solfonio. Per i sistemi di ti-
po propargilico-allenilico si distinguono le betaine di nitrilio e di dia-
zonio (Tabella 2). 

É importante considerare che in presenza del legame π perpendico-
lare al sistema allilico, e come conseguenza dell’ibridizzazione sp 
dell’atomo centrale, gli 1,3-dipoli di tipo propargilico-allenilico deb-
bano essere lineari nel loro stato fondamentale (diazoalcani,18 nitrilos-
sidi19). Al contrario, gli 1,3-dipoli di tipo allilico sono piegati nel loro 
stato fondamentale (azometinilidi,20 nitroni,21 ozono22). Un’ulteriore 
importante considerazione è legata alla natura degli atomi a,b,c che 
compongono la funzione 1,3-dipolare: essi sono generalmente C, N, 
O, mentre sono assai meno comuni gli 1,3-dipoli che contengono ato-
mi di elementi del terzo periodo o di periodi successivi. 

Nel caso degli 1,3-dipoli privi di stabilizzazione dell’ottetto (Tabel-
la 3), almeno uno degli atomi a, b, c non può raggiungere la configu-
razione elettronica stabile completando l’ottetto. La chimica degli 1,3-
dipoli privi di stabilizzazione dell’ottetto non verrà presa in considera-
zione in questa sede, essa è infatti assai meno sviluppata rispetto a 
quella delle più comuni specie 1,3-dipolari con stabilizzazione dell’ot-
tetto mostrate nelle Tabelle 1 e 2. La difficoltà di accesso ai sistemi 
privi di stabilizzazione dell’ottetto rappresenta la causa principale del-
la scarsità dei dati disponibili sul comportamento chimico di tali spe-
cie reattive.23,24 
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Tabella 1. Specie 1,3-dipolari di tipo allilico. 
_____________________________________________________________________________________ 

 
 

 
(continua) 




