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Abstract

Selecting the length of the increment is important in solving the optimal signal timing (OST) and the dynamic
user optimal route choice (DUORC) problem. How large should the increment in the solution process be? The
study of this problem is rare. In this paper, the OST and the DUORC problem was studied with the
consideration of assignment increment. The problem is modeled as a three-level problem and the
experimental study is done. The first level is setting the increment. The second level minimizes total travel
time. The third level is a variational inequality (VI) DUORC model. The result of the experimental study
shows that a smaller increment can increase the precision of the solution. Since the signal cycle at an
intersection cannot be less than the minimum cycle, the study indicates that a small increment is preferred
in solving the OST-DUORC problem as long as the minimum green time is reached. Furthermore,
this paper presents a conception of a new OST-DUORC travel guidance system, including the framework of
the system and the algorithm for it. With the method, the traffic center selects an appropriate increment based
on the result of this study, and then finds the OST for intersections and the optimal routes for travelers by
running the second and third level model. The method helps implement a transport system integrated with a
traffic control system and a DUORC guidance system.

Keywords — dynamic user optimal, increment, route choice, signal timing, transportation network

1. Introduction

In a transport system integrated with a traffic control system and a dynamic user optimal route
choice (DUORC) guidance system, a transport management center of a city sends the optimal routes
to travelers before they start their journeys and sets the optimal signal setting for all the signalized
intersections. In this way, the overall travel cost of all travelers is minimal and meanwhile, the route
choice of all travelers is in dynamic user optimal (DUO) status. To do this, the transport
management center must solve the optimal signal timing (OST) and DUORC problem (OST-
DUORC). The OST-DUORC is often modeled as a bi-level problem with the upper level problem
being OST and the lower level problem being dynamic traffic assignment (DTA) following either
user-optimal [1-4] or system-optimal [5, 6]. The algorithms used in past studies include reactive
tabu search (RTS), genetic algorithms [4, 7], simulation-based method [1, 2], relaxation with
gradient projection algorithm [8], etc.

Past related studies include signal control on static transportation networks [9-22], a
combination of signal timing and DTA [1, 2, 7, 18, 20], combined optimization problem [12],
adaptive signal control [23], dynamically adjusting offsets [24], lane-based signals [25], dynamic
signal timing with dilemma-zone protection [26], adaptive signal processing [27], optimization and
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coordination of signal control [28], dynamic predictive traffic signal control [29], adaptive signal
control [30], traffic signal optimization [31], dynamic nature of dilemma zone [32], dynamic lane-
use assignment [33], dynamic eco-driving near signalized intersections [34], dynamic speed
strategy [35], estimate queue length [36], dynamic reversible lanes [37], the delay of right-turning
vehicles [38], dual-target dynamic optimization [39], delay models [40-52], etc. Since none of these
studies are about the DUO problems on the multiple origins multiple destinations (MOMD)
dynamic transportation networks, they do not apply to the OST-DUORC problem in this study.

In this study, the method in [8] is adopted for the OST-DUORC problem. However, in modeling
and solving the OST-DUORC problem by the method in [8], an increment is always needed to
discretize the study period (actually for any method in solving the DUORC problem, the selection
of the increment is a must issue). The flow propagation on a link at different iterations is always
fixed with a given number of increments at the iteration. The length of the increment selected in the
solution process ranged from 10 seconds in some models (such as the cell transmission model) to
five minutes or more in other methods. The length of the increment is critical in deciding the level
of the precision of the solution. By variating the increment, the solution of the DUORC at different
granularity can be obtained. From the theoretical point of view, the smaller the increment is, the
smaller the error in estimating the travel time of links or paths, and vice versa. For the variational
inequality (VI) model, the error is due to the round-off of link travel times used in the link flow
propagation at each relaxation of the lower VI DUORC problem. For the DUORC problem on a
signalized transportation network, a smaller increment also means a smaller error in signal timing
[8]. However, the green time cannot be too small and the minimum green time for a phase at a
signalized intersection must be considered in reality. How large should the increment in the solution
process be set considering both the precision of the solution and the practice of signal timing? The
experimental study of this problem is rare.

In this study, we presented a three-level model for the joint signal timing and route choice on
networks considering increment for the experimental study of the problem. Furthermore, this paper
presents the conception of a new OST-DUORC travel guidance system. Based on the literature
review of this study, the new OST-DUORC travel guidance system has not been studied yet so far.
With the method presented in this paper, the traffic center selects an appropriate increment based
on the experimental result of this study and then finds the OST for intersections and the optimal
routes for travelers by running the second and third level model.

The remaining of the paper is arranged as follows: Section 2 introduces a three-level model for
the experimental study. Section 3 presents a solution method for the three-level model. Section 4
shows the validity of the model and the algorithm by applying them to a simulation network and
doing the experiment. Section 5 presents the conclusion of the paper.

2. OST-DUORC model

In this section, the OST-DUORC problem with the consideration of increment is formulated as
athree-level model. The first level is setting the increment. The second and the third level combined
are a non-cooperative Stackelberg game. In the game, the transport management center is the leader
of the game and sets signal timing to minimize overall queuing delay. The travelers in the
calculation are the followers of the game who select their routes as a reaction to signal timing to
minimize their costs. The interplay between the transport management center and travelers finally
reaches an equilibrium in which traffic signal timing reaches optimal and travelers choose user-
optimal routes. This is done by the calculation conducted by the transport management center in
the OST-DUORC environment.
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Input OST-DUORC Output Input OST-DUORC Output
| |
Time- 1st level: Optimal Time- 2nd level: Optimal
-dependent setting routes for -dependent setting routes for
OD increment at travelers oD signal travelers
demand the first time demand timing
2nd level: Optimal Optimal
Origins setting signal signal Origins signal
Destinations timing timing Destinations timing
Departure ) for Departure 3rd level: ) for
times 3rd level: intersec- times DUORC ntersec-
DUORC -tions DUORC -tions
DUORC
Fig. 1 - The illustration Fig. 2 - The illustration of the integrated
of the three-level model OST-DUORC model

The illustration of the integrated OST-DUORC model with the consideration of increment is
shown in Fig. 1. The illustration of the integrated OST-DUORC model given the increment is
shown in Fig. 2. It should be noted that selecting an appropriate increment by running the three-
level model only needs to be done in this paper based on Fig. 1. For the transport center, they only
need to find the OST for intersections and the optimal routes for travelers by running the second
and third level model based on Fig. 2. Based on the result of this study, they should select a smaller
increment possible considering the minimum cycle in their signal control systems, as will be
covered in the next section.

The input is the time-dependent origin destination (OD) demand. In the OST-DUORC
environment, the travelers send their origins, destinations, and departure times to the transport
management center by simply clicking the origins and destinations of their journey and entering the
desired departure times on the electronic map of the user terminal of the online travel guidance
system. After aggregating all the individual data, the time-dependent OD demand for each OD is
obtained. The OST-DUORC solver solves the OST-DUORC problem and finds the optimal routes
for travelers and the optimal signal timing for intersections. The optimal routes are shown to
travelers on their electronic maps and the optimal signal timing is set for intersections. The
difference between the optimal routes provided by the integrated OST-DUORC from the optimal
routes in today’s maps lies in that not only the links/streets and nodes/intersection will be shown,
but the signal timing at each intersection and the traversing time on each street on the route will
also be shown. What’s more, the overall queuing delay of all vehicles at intersections is minimal
and meanwhile, the route choice of all travelers is in DUO status.

The relevant notations for variables are defined as follows. [0, Ty]: departure horizon or the
period when vehicles are departing from an origin and entering the network. [0, T]: the period from
the beginning to the time point at which the last vehicle entering the network reaches its destination.
xX: the number of vehicles on link a at beginning of interval k. u¥: inflow into link a during interval
k. vk: exit flow from link a during interval k. S,: the saturation flow rate for link a. g¥: the total

number of vehicles queued at or entering the exit of link a at k. q{;’: the number of vehicles queued
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at the exit of link a in red time increment k. qg'g : the number of vehicles joining the queue at the
exit of link a or entering the intersection during the green time increment k. u}’(k): inflow into
link a from origin r to destination s at time k. v : outflow from link @ from origin r to destination
s at time k. fiS: departure flow from origin  toward destination s during interval k. T¥(+): actual
travel time over link a for flows entering link a at time k. 7,(0): the travel cost on link a when
there is no queue at the downstream of the link. 7,(0) is the rounded integer of 7,(0). f,%- flow
for route p between origin r and destination s during interval k. 17,5 : actual travel time for route p
between OD pair rs for flows departing origin r at time k. n;fk: actual travel time for route p
between origin r and node i for flows departing origin r at time k. In this paper, when the
superscript is too long, it can also be put into a pair of square parenthesis after the variable.

Without loss of generality, a phase only consists of effective red time and effective green time.
Define a link’s cycle as the cycle of the link’s downstream intersection. For the reason of first-in-
first-out (FIFO) respect and accuracy [52], the following point-queue (PQ) model is adopted to
estimate the link travel time.

7,(0) + q‘(lkﬁ“(o))/Sa, (k +7,(0)) € green

7,(0) + tX" + q((lkﬂa(o))/sa, (k +7,(0)) € red
where 7,(0) is the travel cost when the link is empty. 7,(0) is the rounded integer of 7,(0),
qa(k + 7,(0)) is the overall vehicles queued at the downstream of link a at (k + 7,(0)).

When traffic is not congested, we have
(k474 (0)-1),r
a

() =

(M

£k+%a(o)),g (k +17,(0)) € green

q(k+fa(0)) _Ja +q
(k +7,(0)) € red

a (k+Tq(®),r
a

The three-level model is defined as follows.
The first level is setting the increment At. Abbreviate At as A. The first level is selecting A to
min Zl = ZZ + Z3 (3)

Imin<A<€max
where g, 1S the minimum green time of a phase in reality, and €,,,, is the maximum of the
allowable round-off error in link travel times used in the link flow propagation at each relaxation
of the VI DUORC problem. Z, and Z; are the objective function value for the second level and the
third level of the model, respectively.
The second level of the model is defined as

min Z, = %, Zq ufts() @)
where g and r are the green time and red time. (4) is the total travel time spent by all the travelers

in completing their journey, which follows the SO principle.
The third level of the model is defined as the following discrete VI DUORC model including

() - (3).

2)

K * *
Zr,s,p Eki1 le,sk (fpri - fpri ) =0 (5)
where * means the path flow and path time is estimated at the optimal status, and 1, f€ .‘RIFXK",
e =0 + ok + V] Vi =1,2,s 6)

where p = (r,:++,5), x € 0,. O is the feasible region defined by the following constraints:
Path flow conservation constraint:

Ypfore=f® Vkrs (7
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Link inflow conservation constraint

Sl =uk Vakrs ®)
Link outflow conservation constralnt
er k - va Va, k' r,s (9)
Node flow conservation constraint:
YaeB() Vak = Laca(pUak Y #1,5 k1,8 (10)

where A(j) is the set of links after j and B(j) is the set of links before j.

Link flow propagation constraint:

uly = vk + kv a k, 7, s (11)
Inflow and queue equation

e qt(lkﬁ“(o))’g (k + fa(O)) € green

Ua = (k474 (0)),r (12)
e (k + ‘Ea(O)) € red

Outflow and queue equation

v(gk+fa(0)) _ qc(lkﬁ“(o)_l)‘r + qt(lkﬁa(o))'g (k +7,(0)) € green (13)
0 (k + fa(O)) € red
Path-link flow incidence constraint:
U () = Brop T2, f13 Shsa Y a, ko, 7, (14)

where sta =1 if travelers departing origin r at interval k heading for destination s on path p
arrives at link a during the nth interval; =0, otherwise.
Nonnegative constraint:

for 2 0,ugy =20 Vkr1,5,ap (15)
The VI DUORC model is equivalent to the following optimization problem under relaxation
TS[ Tl pkn
mfln Z3 Z Za {ersZk 1pr [n Mp (k)]arsa ((1)) d(l)} (16)

So the third level of the model under relaxation is (6) - (16).
The second level and the third level combined are a non-cooperative Stackelberg game.

3. Algorithm

The procedure of the algorithm for solving the three-level model is introduced in this section.

In the first level of the model, the increment A is gradually increased within the range g, <
A < €4, Considering the effective green time and the effective red time is used in this study, we
set gmin=10 seconds, and the A is increased by 1 seconds at each iteration in the first-level model
in the solution process. The €,,4, is set as 60 seconds, meaning the round-off error in link travel
times used in the link flow propagation at each relaxation of the VI DUORC problem is within 60
seconds. Both g,,,;, and €,,4, can be set as other values depending on the requirement of precision
in solving the problem.

In the second level of the model, the green time and red time g and r must be set to minimize
Zy = Y Yquktk(). Since the second level of the model is bounded by the solution of the third
level model, u and q are given. Thus, the minimum of Z, is equivalent to minimizing the total
queuing delay at red time of each cycle for every single signalized intersection. Based on Xu et al.
[8], the latter can be minimized by assigning green time to the approach with maximal ratio, or
updating the t] (k) based on the formula
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i KFea Kz __ =
glornew) _ {green if max {C @ k)} > ng‘{c (a, k)},v aed gel (17)
red otherwise

where A is the leg set of the intersection with the same phase as a, Ais the leg set of the
intersection with conflicting phase with a, %(a, k) is the volume/ saturation ratio of approach a

(link a) of the intersection of which link a is a leg, etc. It is noticeable that if a phase is set as green
its conflicting phase must be updated as red to avoid flow conflict in intersections.

In the third level of the model, the relaxation with gradient projection algorithm for solving the
DUORC problem on a signalized transportation network [8] is used in this study.

The flowchart for solving the three-level model illustrated in Fig. 1 is shown in Fig. 3.

Increment
Sional timine initializati P Increase
1gnal timing mitialization < increment
\ 4
Update
Execute DUORC algorithm signal [
timing
Calculate all travelers’ total travel
time and total queuing delay
No
otal queuing delay convergent?
v Yes No
Yes
\ 4

output
|

Fig. 3 - The flowchart of the algorithm

It should be noted that the part of the flowchart highlighted in light green is for solving the
integrated OST-DUORC model illustrated in Fig. 2.

4. Numerical example

4.1. The simulation network

An example is introduced below to show the three-level model and algorithm. The network is
shown in Fig. 4. In the network, each link stands for a 1.5-mile-long two-lane street. Links
belonging to un-signalized intersections include links 24, 21, 19, 15, 10, 6, 4, and 1. All the other
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links belong to signalized intersections. The phases for them are shown in Fig. 5. There are two
phases in each cycle for all the signalized intersections. The cycle length is not fixed. A phase
consists of effective red time and effective green time. Both the red time and green time of a phase
are a multiple of the increment. The optimal signal timing is to be found by solving the OST-
DUORC problem. The saturation flow rate for all links is 1 vehicle unit/second/lane. The free flow
speed is 36.67 feet/second or 25 miles/hour. The links belonging to un-signalized intersections have
constant link travel time 7% = L,/ Sy + 0.35A, where L, and sy are the length of link a and the free
flow speed, A is time increment. (1) is used to estimate the link travel time on other links, where
74(0) = Ly/s¢. Four OD pairs are considered. They are 1-9, 9-1, 3-7, and 7-3. Two cases are
considered. In case one, the departure period is from 7: 00 to 7: 20 AM. For OD 1-9 and 9-1, the
departing flow rate is 30 vehicles/ minute from 7: 00 to 7: 05 AM. and from 7: 15 to 7: 20 AM.
The departing flow rate is 40 vehicles/ minute from 7: 05 to 7: 15 AM. For OD 3-7 and 7-3, the
departing flow rate is 35 vehicles/ minute from 7: 00 to 7: 05 AM. and from 7: 15 to 7: 20 AM.
The departing flow rate is 50 vehicles/ minute from 7: 05 to 7: 15 AM. Case one is for the
demonstration of the effect of the length of the increment. To illustrate the whole process of the
OST-DUORC problem in detail, a short departure period is needed, which is the case in case two.
In case two, there are five 30-second departure intervals. The time-dependent OD demand at each
interval is 10 vehicles.

4.2. The effect of the increment in OST-DUORC solution

The algorithm shown in Fig. 3 was adopted to solve the three-level model in case one of the
example. By variating increments and solving the Stackelberg game accordingly, the total travel
cost of all vehicles, the total queue*stop in red time, and the total cost of all vehicles versus
increment were found and were shown in Fig. 6, Fig. 7, and Fig. 8, respectively.

=~ Y
> A
< Y

_€, Phase for left turn, through and right turn movement
S Node for origin and destination, X )
/ _? Phase for through and right turn movement
or un-signalized intersection

node §

Z Phase for left turn and through movement

_< Phase for left turn and right turn movement
_— S

reel

Signalized intersection

Greenlight O vellow light @  Red lioht

Fig. 4 - Simulation network Fig. 5 - The phases for the signalized intersections
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Fig. 8 - The total cost of all vehicles versus increment

The total cost of all vehicles is the sum of the total travel cost of all vehicles and the total queuing
delay in red time. As can be seen in the figures, generally all of them increased with the increased
increment. It can also be seen in the figures that the variation of the total travel cost of all vehicles,
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the total queue*stop in red time, and the total cost of all vehicles increase with the increased
increment. The increasing of cost comes from the truncation error in the solving process of the
Stackelberg game. Based on the experimental study in this study, a smaller increment is preferred
in solving the OST-DUORC problem to increase the precision of the solution. However, the signal
cycle at an intersection cannot be less than the minimum cycle. This indicates a smaller increment
is preferred as long as the minimum green time is reached. Considering the practice in reality, we
set the increment as 30 seconds in the following study. The increment equalling the length of the
minimum green time can be the reference in practice.

4.3. The optimal signal timing with DUO solution

Based on the result in section B, we set the increment as 30 seconds for both case one and case
two. The algorithm shown in Fig. 3 (the part highlighted in light green) was adopted to solve the
Stackelberg model (the second and the third level) in case one and case two of the example when
the increment is set 30 seconds. After a few outer iterations, the algorithm converges with a criterion
of 0.0001 of the difference of the total queued vehicles between successive iterations. The queue
versus iteration for case one is shown in Fig. 9.

- -® - The total queued vehicles in red time
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Noow
S 8 &
g 8 3
3 8 8
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Fig. 9 - The queue versus iteration
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Since the departure period and intervals in case one are far more than in case two, we only show
the result for case two in the following part of the paper for conciseness. Even for case two, only
part of the result is shown in this paper because of the space of the paper. But the result is similar
for all the cases.

The initial signal timing for case two is shown in Fig. 10. The optimal signal setting for case
two is found and is shown in Fig. 11. A careful comparison of the above figures between initial
signal timing and optimal signal timing found they are very different.

Randomly taking OD 7-3 as an example, the flow on each used path under initial signal timing
and optimal signal timing are shown in Fig. 12. The travel cost for each used path under initial
signal timing and optimal signal timing are shown in Fig. 13. There are 13 paths used by travelers/
vehicles (with non-zero flow) under initial signal timing whereas there are 10 paths used by
travelers/ vehicles under optimal signal timing. It can be seen in Fig. 13 that travelers/ vehicles from
the same OD at the same departure time have equal path travel time.

Randomly taking link 23 as an example, the queued vehicles over red time and throughput over
green time at link 23 under initial signal timing and optimal signal timing are shown in Fig. 14. It
can be seen in the figure the number of the queued vehicles is decreased in optimal signal timing.

6 _8
2 4 S 6
azmh‘l“lll ST
g 0 50
)= 3 5 7 9 11 13 = 2345678910
o Path number & Path number

(a) (b)

Fig. 12 - The flow on each used path (OD:7-3).
(a) under initial signal timing. (b) under optimal signal timing
__64 .
QO A QD
2 02 z 6
g © E _
E,’ 5.8 ‘;1:'; 55
.E. 586 B 5
£ 54 =
o 5.2 a 45
35791113 1234567891
Path number Path number
(a) (b)

Fig. 13 - The travel cost for each used path (OD:7-3).
(a) under initial signal timing. (b) under optimal signal timing
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link 23 link 23
(a) (b)

Fig. 14 - The queued vehicles over red and throughput over the green at link 23 (abscissa is interval).
(a) under initial signal timing. (b) under optimal signal timing

Tab. 1 - The flow on each used path and the travel cost for each used path
under optimal signal timing for OD 1-9

No. O D K Path Path Links on the path ~ Arrive time interval at
flow time each link on the path
1 1 9 1 48949 52311 S5 15 23 24 1 4 7 11
2 1 9 1 51051 5231 3 4 9 19 1 4 7 11
3 1 9 2 44703 6.0668 5 13 17 24 2 5 8 12
4 19 2 55297 60669 3 7 14 19 2 5 8 12
5 1 9 3 52676 52121 5 15 23 24 3 6 9 13
6 19 3 47324 5212 3 4 9 19 3 6 9 13
7 19 4 37978 6.0983 5 13 17 24 4 7 10 14
8 1 9 4 62022 6091 3 7 17 24 4 7 10 14
9 1 9 5 55438 52329 5 15 23 24 5 8 11 15
10 1 9 5 44562 52329 3 4 9 19 5 8 11 15

Randomly taking OD 1-9 as an example, the flow on each used path and the travel cost for each
used path under optimal signal timing are shown in Table 1. Based on Table 1, we can see that there
are 10 paths on the time-space network for OD 1-9. For OD 1-9, path "1-2" are for departure time
interval 1, path "3-4” are for departure time interval 2, path “5-6” are for departure time interval 3,
path “7-8” are for departure time interval 4, path “9-10” are for departure time interval 5,
respectively. For time-dependent OD demand from OD 1-9 at time interval 2, it is divided into two
branches with path flow being 4.4703 units and path time being 6.0668 minutes going along path
“3”, path flow being 5.5297 units and path time being 6.0669 minutes going along path “4”. For
path “3”, 4.4703 units of vehicles first enter link 5 at time interval 2, then exit the link and enter
link 13 at time interval 5, then exit link 7 and enter link 17 at time interval 8, then exit link 17 and
enter link 24 at time interval 12, finally reach destination 9 after traversing link 24. The travel time
for each of the 4.4703 units of vehicles is 6.0668 minutes. Since the path time of each path is equally
6.1815 minutes and the demand is 10, the overall travel cost for the demand is 60.668 minutes. The
travel time for other demands can be analyzed similarly.

The queued vehicles over red time for some links are shown in Table 2, and the throughput over
green time for some links are shown in Table 3.

Based on Table 2, randomly selecting link 2 as an example, we can see that for link 2, there are
5.5268 units of vehicles queued at the exit of it in time interval 5, and 6.2079 in time interval 7. The
red color means the time interval is red time and the figure is the queue.

Based on Table 3, randomly selecting link 2 as an example, we can see that for link 2, there are
5.1058 units of vehicle leaving it in green interval 4, 10.2623 units of the vehicle in the green time
interval 6, 15.5528 units of the vehicle in the green time interval 8, 5.3712 units of the vehicle in
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the green time interval 10. The total vehicle throughput in green time increment is the sum of all
vehicle throughput for all links and is computed as 665 units of vehicle. The green color means the
time interval is green time and the figure is the throughput.

Under initial signal timing, the total vehicles queued at the red time increment is the sum of all
queued vehicles for all links and is computed as 250. The overall queuing delay over red equals the
number of queued vehicles in red time multiplied by red time which is 30 seconds in this example
and the result is 125 minutes. The overall travel cost for all vehicles of all ODs is the product of the
number of vehicles of all ODs and their travel cost and the result is 1176.4 minutes. Under optimal
signal timing, the total vehicles queued at the red time increment is computed as 160. The overall
queuing delay over red is 80 minutes. The overall travel cost for all vehicles of all ODs is 1033.6
minutes. We can see that both the overall queuing delay over red and the overall travel cost for all
vehicles are decreased by optimizing signal timing at the DUORC status.

Tab. 2 - The queued vehicles at downstream of ~ Tab. 3 - The throughput at downstream of some links

some links over red under optimal signal timing over green under optimal signal timing
Lin interval k Lin interval k
k 1 2 3 4 6 7 8 9 k

1 0 0 0 0

2

11 0 0 0 0 0
0 0 0 0 0 10
12
0 0 0 0 0 11
13
12
14 0 0 0 0 0 0 13

The validity of the solution can be checked by some examples as follows.
Path flow conservation constraint:
29 = f19 4 f19 4 f12 =5.7430+1.3346+2.9224=10

Link inflow conservation constraint:
ugy + u3=3.8016+3.0317+3.8016+3.0317=13.6667=u§

Link outflow conservation constraint: vg; + V333 = 13.6667= vg>.

Node flow conservation —constraint:  Y,eps) Va's = Laen(e) Vo = Vo + Uiy + 15y =
6.3331+0+6.3334=12.6665.
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Yaeae) Uns = Laeae) Us = uly +ub, + udy = 6.3331+0+6. 3334*13 6665.
Link flow propagatlon constraint: ugy = vg'[9 + T3] = vgis = 6.8333, uds = v*[9+ 73] =
V¢33 =6.8333, where 73 = 1.7568 minutes.
For a time increment of 30 seconds, T2° = 4.
Inflow and queue equation: u3 = q}, = 8.6654, for link 2, time 7 € red. uj = qgs =5.0005,
for link 2, time 8 € green.
Outflow and queue equation: v =0, for link 2, time 7 € red, v§ = q}, + qf_g =q8 =
13.6669, for link 2, time 8 € green.
The actual travel cost on the used paths of OD 1-9 departing at increment 1 is as follows:
i1 =13+ r7 + 1], + 731 = 1.2416+1.2832+1.7416+1.3749= 5.6412 minutes.
Similarly, c{3 =5.6412 minutes.
All these meet the conditions of the DUORC problem. This shows the validity of the model and
algorithm.

5. Conclusions

Selecting the length of the increment is important in solving the optimal signal timing (OST)
and the dynamic user optimal route choice (DUORC) problem. In this paper, the OST and the
DUORC problem was studied with the consideration of assignment increment. The problem is
modeled as a three-level problem. The first level is setting the increment. The second and the third
level are a non-cooperative Stackelberg game. The result of the experimental study indicates that a
reasonable increment should be used in solving the OST-DUORC problem. Concretely speaking, a
smaller increment is preferred in solving the OST-DUORC problem as long as the minimum green
time is reached. The increment equalling the length of the minimum green time can be the reference
in practice.

Furthermore, this paper presents a conception of a new OST-DUORC travel guidance system,
including the framework of the system and the algorithm for it. Based on the result of the
experimental study and the method, the traffic center of a city selects an appropriate increment (as
small as possible as long as the minimum green time is reached) in solving the OST-DUORC
problem on the work station (a huge computer) of the traffic center, and then finds the OST for
intersections and the optimal routes for travelers by running the second and third level model. The
information on the optimal routes will be sent to the on-board devices on the vehicles of the travelers
and shown on the electronic map. The information on the optimal signal timing will be sent to traffic
control centers or signal timing devices at intersections and optimal signal timing will be set for
intersections. All the information will be sent through the communication system.

The new OST-DUORC travel guidance system can provide the links/streets and
nodes/intersection and the signal timing at each intersection and the traversing time on each street
on the route. Meanwhile, the overall queuing delay of all vehicles at intersections is minimal and
the route choice of all travelers is in DUO status. Future study may consider the optimal departure
time in addition to the optimal route choice and optimal signal timing.
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Abstract

Leveraging advanced computer vision techniques, we present a novel method for analyzing and categorizing
traffic videos by utilizing an image mapping technique combined with a UniVit (Unit Vision Transformer)
model. First, video data is transformed into an image dataset, where each frame undergoes a mapping process
based on vehicle detection using the YOLOv8s algorithm. These mapped images are then input into a vision
transformer, which utilizes attention mechanisms to identify and analyze complex patterns across frames. The
approach is evaluated on the UCSD (University of California San Diego) dataset, which features diverse
weather conditions such as clear, overcast, and rainy scenarios, enabling a rigorous assessment under varied
environments. Our method achieves a notable accuracy score of 99.89%, surpassing previous approaches on
the UCSD benchmark. This improvement underscores the effectiveness of combining image mapping with
advanced vision transformers, suggesting promising applications for intelligent traffic management systems
aimed at mitigating traffic issues.

Keywords — vision transformer, traffic congestion, YOLOVSs, image mapping

1. Introduction

The rapid influx of people to cities strains traffic systems, causing economic hardship and
disrupting vital urban services like healthcare and public safety [1]. According to Bashingi et al.
[2], poor traffic management leads most noticeably to serious issues like longer commutes, but the
impact likely extends beyond mere inconvenience. Traffic congestion doesn’t just affect cities — it
takes a toll on individuals too. Throughout peak traffic periods, wasted time, neurocognitive
weariness and elevated airborne impurities. 2030 is expected to see traffic congestion costs across
France, Germany, the United Kingdom, and the United States rise to 55 billion US dollars [3]. A
country’s advancement hinges on both fostering economic development and ensuring the
convenience of its road users, a task unattainable without streamlined traffic movement. The
capability to anticipate traffic congestion provides officials and commuters with the essential lead
time to allocate resources effectively, ensuring seamless travel experiences for all. Therefore, there
is a pressing need for a universal and versatile traffic congestion detection system [4]. Intelligent
transportation systems (ITS) offer cutting-edge solutions for traffic management. Camera networks,
a recent advancement in ITS, are proving particularly promising. In contrast to traditional loop
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detectors, video-based systems are less intrusive to install, more cost-effective, and provide a richer
grasp of traffic circulation trends. Deep learning tackles massive datasets from cameras to reveal
intricate traffic patterns and congestion hotspots, Chakraborty et al. [5] proposed two distinct deep
learning methodologies were employed: You Only Look Once (YOLO) and Deep Convolutional
Neural Network (DCNN), to identify instances of traffic congestion within camera footage.
However, these methods depend heavily on data quality and quantity. Traditional traffic data often
falls short. Saini and Susan [6] found that deep learning thrives on richer datasets, while smaller
ones lead to subpar performance. Data augmentation, a technique that creates variations of existing
data, bridges the gap between training and testing data, as shown by Shorten and Khoshgoftaar [7].
Advanced image processing algorithms and object detection methods have created new
opportunities for vision-based smart traffic control systems [§]. Vision Transformers (ViTs) have
demonstrated success in various image recognition tasks, but their application to traffic
classification remains underexplored. This motivated us to investigate their potential in this domain.
While Ramana et al. [9] investigated the use of both CNNs and ViTs for urban traffic flow
prediction, this study employed the You Only Look Once (YOLOvVS8s) detector to identify
automobiles in the image, followed by the application of Vision Transformers (ViTs) for traffic
congestion classification. Drawing on the advancements in accuracy demonstrated by the
YOLOVSs algorithm as highlighted by Lou et al. [10], This streamlines our method and increases
its potential applicability for real-time use. The main contributions of this research cover the
following points:

1. We apply the Region of Interest (ROI) technique to downscale the image and then resize it
further to a more compact format, achieving high classification accuracy while minimizing
memory usage.

2. The image mapping stage involves simplifying the dataset, which in turn reduces
computation time and task complexity.

3. We employ a Unit Vision Transformer (UniViT) consisting of a single head layer to classify
traffic congestion, facilitated by the prior implementation of image mapping using
YOLOVSs, which streamlines the classification process.

4. We assess the proposed method under various weather conditions by using the publicly
available UCSD dataset [11] highlight its superiority compared to current methods.

The remainder of the paper is organized as follows: Section 2 provides the literature review.
Section 3 elaborates on the proposed method, covering various stages. Section 4 discusses the
experimental results and benchmarks the proposed method against other recent techniques. Finally,
the paper concludes with section 5.

2. Literature review

Video cameras have become integral in traffic congestion estimation due to their non-intrusive
installation on road infrastructure. Analyzing traffic videos generally requires two key elements:
vehicle density and speed. Various studies have explored methods to estimate these factors
effectively.

Zhao et al. [12] propose a new solution for automatic traffic congestion detection traffic
congestion using Remote Transportation Microwave Sensors (RTMS) installed on Chinese
highways. This approach uses pattern matching and correlation analysis to detect congestion and
introduces virtual nodes for improved accuracy, achieving notable results on the Beijing-Harbin
highway. However, RTMS sensors depend on sufficient data density, which may not be feasible in
sparse sensor installations. Hu et al. [13] design new method to improve the efficiency of traffic
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