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P R E FA C E

The accessibility of computers has resulted in a novel era of
teaching and learning, expanding traditional science and engi-
neering curricula to include scientific computing is both desired
and required. Numerical simulation is a cost-effective alterna-
tive to actual experimentation due to its portability and minimal
overhead. The new framework has prompted the creation of
texts written from a modern perspective, with mathematics and
computer programming features integrated into the discourse.
This modern directive theory and execution are complementary
and provided in a sequential order. A different approach involves
connecting computational approaches and simulation algorithms,
as well as turning equations into computer code instructions
directly after problem formulation. The seamless integration of
scientific computer tools into traditional discourse provides a
great forum for improving analytical abilities and gaining physi-
cal knowledge.

The goal of this book is to provide the reader with all of the
tools needed to understand the topics of computational fluid
dynamics, beginning with brief references to fluid mechanics,
demonstrating the difficulties in solving the governing equations,
and progressing to the various numerical approaches used in the
scientific literature, with a focus on the finite difference method.

Furthermore, the problem of turbulence and vortex dynamics
was highlighted, examining the turbulence models and the DNS
method. Finally, we wanted to present some engineering applica-



tions that make use of different numerical methodologies.

The presentation of the material is distinguished by the practi-
cal component of the text to make the exposition of the concepts
clearer, so certain paragraphs feature examples of numerical code
generated in a Python environment with some C++ applications.

Rome, October 2024
Biagio Saya
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1
I N T R O D U C T I O N

1.1 the nature of fluids

There are several possibilities to watch fluids flowing in our
everyday environment, such as smoke from a chimney, water
in a river or waterfall, or the buffeting of a strong wind. Fluid
flow occurs in response to external conditions, such as boundary
motion, surface force, or body force. The evolution of a transient
flow and the structure of a steady flow established after an initial
start-up period are governed by two fundamental principles of
thermodynamics and classical mechanics: mass conservation, and
Newton’s second law for the motion of a fluid. For fluid flows,
be they laminar or turbulent, the governing laws are embodied
in the Navier–Stokes equations, which have been known for over
a century.

1.2 computational physics

As previously introduced, humans have long been fascinated
with fluid behavior. However, contrary to common opinion, these
events exhibit complex characteristics that are impossible to pre-
dict using a simple linear equation. It is generally accepted that
the Naiver-Stokes equations (NS) can explain fluid motion. The
intricacy of fluid motion necessitates the employment of numeri-
cal techniques, resulting in the term “Computational Physics”. This
field has seen a surge of development in the previous thirty years,
both theoretically and practically. Improvements in numerical
approaches, along with rapid advancements in computer technol-
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ogy, have resulted in many formerly intractable fluid dynamics
problems being routinely solved. The primary aim of this dis-
cipline of science is to solve partial derivative equations using
a numerical model that produces an approximate solution. The
numerical solution’s congruence with real-world experience and
experimental observation warrants further investigation.

Considering the diversity and complexity of fluid flows, it is
quite remarkable that the relatively simple Navier–Stokes equa-
tions describe them accurately and in complete detail, and as
a consequence (in general) the direct approach to solving the
Navier–Stokes equations is impossible. So, while the Navier–Stokes
equations accurately describe turbulent flows, they do not pro-
vide a tractable model for them. For this reason, the direct
approach to solving the Navier–Stokes equations for turbulent
flows, also called direct numerical simulation (DNS), becomes
a workable solution. This method becomes fundamental for
the study of flow in the high-Reynolds-number and it is never-
theless a powerful research tool for investigating the turbulent
flow through statistical models that can be used to calculate the
properties of turbulence.

4 Introduction 
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flow through statistical models that can be used to calculate the
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2
F L U I D M O T I O N E Q UAT I O N

2.1 overview

Everyday life provides us with an intuitive understanding of
fluid motion: the smoke from a cigarette or a fire. Despite this, it
is easy to see how, in most circumstances, we are presented with
examples of chaotic phenomena, making the topic’s discussion
challenging. The non-regularity of fluids can be summarized in
the turbulent regime proposed by Reynold.

More specifically Turbulence is also mentioned to describe
the flow of a stream in a river, with important consequences con-
cerning the sediment transport and the motion of the bed. The
rapid flow of any fluid passing an obstacle or an airfoil creates
turbulence in the boundary layers and develops a turbulent wake
which will generally increase the drag exerted by the flow on
the obstacle (and measured by the well known CD coefficient):
in this perspective, turbulence has to be avoided in order to
obtain better aerodynamic performance for cars or planes. The
majority of atmospheric or oceanic currents cannot be predicted
accurately and fall into the category of turbulent flows, even on
large planetary scales. Small-scale turbulence in the atmosphere
represent an obstacle to the accuracy of astronomic observations,
and observatory locations have to be chosen in consequence. The
atmospheres of planets such as Jupiter (figure 1) and Saturn, the
solar atmosphere or the Earth’s outer core are turbulent. Galaxies
look strikingly like the eddies which are observed in turbulent
flows such as the mixing layer between two flows of different
velocities and are, in a manner of speaking, the eddies of a turbu-
lent universe. Turbulence is also produced in the Earth’s outer
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magnetosphere, due to the development of instabilities caused
by the interaction of the solar wind with the magnetosphere.
Numerous other examples of turbulent flows arise in aeronautics,
hydraulics, nuclear and chemical engineering, oceanography, me-
teorology, astrophysics, and internal geophysics ([Lesieur(2008)]).

In conclusion, the fluids in a turbulent regime exhibit abstruse
behavior. As a result, the goal we will pursue will be to investi-
gate turbulence and vortex dynamics, as these are the challenges
of the new millennium.

Figure 1: Eddies in Jumpiter observed by JunoCam imager on NASA’s
Juno spacecraft in December 2018 ([Nasa(2018)])

2.2 introduction to motion equations

The necessity to study the spectacular behavior of fluid and
eddies motion led to conceive an elegant formulation made by
equations of Motion, Mass and energy balance. This concept
can be expressed in a simple formulation suggested from the
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2.2 introduction to motion equations

The necessity to study the spectacular behavior of fluid and
eddies motion led to conceive an elegant formulation made by
equations of Motion, Mass and energy balance. This concept
can be expressed in a simple formulation suggested from the

study of General Relativity that assumes the following formalism
([Landau and Lifshitz(2013)]),

∂Tk
i /∂xk = 0 (2.1)

Tk
i represents the stress tensor energy and ∂/∂xk express the

partial derivative in 4-space, which are the three Cartesian co-
ordinates and the time. But omitting the relativistic approach
in classic formalism the equations of motion for a general New-
tonian fluid will now be established. In doing so the fluid will
be considered to be a continuum. In a continuum, the smallest
volume element considered dV is still homogeneous, i.e. the
dimensions of dV are still very large compared to the average
distance between the molecules in the fluid. In three–dimensional
motion the flow field is given by the velocity vector

v⃗ = e⃗xu + e⃗yv + e⃗zw (2.2)

with the three components u, v, w in a Cartesian coordinate sys-
tem with unit vectors e⃗x, e⃗y, e⃗z and also by the pressure p and
the temperature T. To determine these five quantities, there are
five equations available: continuity equation, three momentum
equations and energy balance ([Schlichting and Kestin(1961)]).

2.3 the continuity equation

The classical Newtonian physics assumes conservation of mass
m, which can be written as dm/dt = 0. The Balance of mass is
a generalization of this equation to the continuum mechanics
setting. Consider a tiny differential control volume that can be
approximated to the mass flow rate into or out of each of the six
surfaces of the control volume and, using Taylor series expansions
around the center point, where the velocity components and
density are u, v, w, and ρ. For example,

 .   7
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(ρu)|rightside = ρu +
∂(ρu)

∂x
· dx +

1
2!

∂2(ρu)
∂x2 · dx2 + ... (2.3)

Figure 2: integration domain using

Next, we add up all the mass flow rates through all six faces
of the control volume to generate the general (unsteady, incom-
pressible) continuity equation:

∑
in

ṁ = ρu dy dz + ρv dx dz + ρw dx dy (2.4)
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pressible) continuity equation:

∑
in

ṁ = ρu dy dz + ρv dx dz + ρw dx dy (2.4)

∑
out

ṁ = ρu dy dz + ρv dx dz + ρw dx dy+

(
∂(ρu)

∂x
+

∂(ρv)
∂y

+
∂(ρw)

∂x

)
· dx · dy · dz

(2.5)

where ∑in ṁ and ∑out ṁ are the net mass flow in and out of the
control volume V(t) and neglecting the term higher of second
order in Taylor expansion.

The mass m(t) of volume V(t) is expressed in terms of the
Eulerian density field ρ(x, t) as

m(t) =
∫

V(t)
ρ(x, t)dv (2.6)

and its derivative, for the Leisbery theorem, becomes

dm
dt

=
∫

V(t)

∂(ρ)

∂t
dv (2.7)

Using the notion of the density field, the Reynolds transport
theorem, and the requirement

∫

V(t)

∂(ρ)

∂t
dv = ∑

in
ṁ − ∑

out
ṁ (2.8)

with ∇ · v(x, t) the diverge of velocity filed. Then immediately
yield the integral form of the balance of mass

∫

V(t)

[
∂ρ

∂t
+ ρ(x, t)∇ · v(x, t)

]
dv = 0 (2.9)

where V(t) is an arbitrary volume in the sense that it is the
volume obtained by tracking an arbitrarily chosen initial volume
V(t0). Since the volume in the previous equation is arbitrary, and
the considered physical quantities are assumed to be sufficiently
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smooth, the integral form of the balance of mass leads to the
point wise evolution equation

∂ρ

∂t
+ ρ(x, t)∇ · v(x, t) = 0 (2.10)

It follows immediately from the continuity equation 2.10 that
incompressible flows, i.e. flows of incompressible fluids, are
source-free. We have:

∂ρ

∂t
= 0 ∇v = 0 (2.11)

2.4 the momentum equation

Fluid flow is established in response to an external action medi-
ated by boundary motion, by the application of a surface force,
or by the presence of a body force. The evolution of a transient
flow and the structure of a steady flow established after an initial
start-up period is governed by two fundamental principles of
thermodynamics and classical mechanics: mass conservation and
Newton’s second law for the motion of a fluid parcel. The imple-
mentation of Newton’s law of motion in continuum mechanics
leads to Cauchy’s equation of motion, providing us with an ex-
pression for the point particle acceleration in terms of stresses,
and to the vorticity transport equation governing the point parti-
cle rotation. The derivation and interpretation of these equations
in general and specific terms, and their solution for simple flow
configurations will be discussed.

Newton’s second law of motion requires that the rate of
change of the linear momentum of a fluid parcel, M, is equal to
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the sum of the forces exerted on the parcel, including the body
force due to gravity f⃗ and the surface force P⃗,

dM⃗
dt

= f⃗ + P⃗ =
∫∫

S(t)
f · ds +

∫∫∫

V(t)
ρ · g · dV (2.12)

where f is the hydrodynamic traction exerted on the parcel
surface. Expressing the traction in terms of the stress tensor, we
find

dM⃗
dt

=
∫∫

S(t)
n · σ · ds +

∫∫∫

V(t)
ρ · g · dV (2.13)

where the unit normal vector, n, points into the parcel exte-
rior. Our next task is to relate the rate of change of the parcel
momentum to the fluid density and velocity.

rate of change of linear momentum

An expression for the linear momentum arises considering the
mass dm = ρdv, and summing the contributions by integration
to obtain the rate of change of linear momentum,

dM⃗
dt

=
d
dt

∫

ρ̃(t)
vdm =

∫∫∫

V(t)

Dv
Dt

ρdV (2.14)

with ρ̃ the density per unit volume (ρ dv) and v the fluid velocity.

Note that an equation demonstrated previously expresses the
inertial force of the fluid mass. If we want to express the inertial
component Fi of a material point with mass m we obtain that
Fi = d/dt(m · v).
Substituting the right-hand side of equation 2.14 in the left-hand
side of 2.15, we obtain the desired equation of parcel motion,
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∫∫∫

V(t)

Du
Dt

ρdV =
∫∫

S(t)
n · σ · ds +

∫∫∫

V(t)
ρ · g · dV (2.15)

involving the point particle acceleration, the stress tensor, and
the body force. Explicitly, the x, y, and z components are,

∫∫∫

V(t)

Du
Dt

ρdV =
∫∫

S(t)
(σxx + σyx + σzx) · ds +

∫∫∫

V(t)
ρ · gx · dV

∫∫∫

V(t)

Dv
Dt

ρdv =
∫∫

S(t)
(σxy + σyy + σzy) · ds +

∫∫∫

V(t)
ρ · gy · dV

∫∫∫

V(t)

Dw
Dt

ρdv =
∫∫

S(t)
(σxz + σyz + σzz) · ds +

∫∫∫

V(t)
ρ · gz · dV

The previous equations are valid irrespective of whether the
fluid is compressible or incompressible.

Transforming the surface integral of the traction into a volume
integral can be done using once again the Gauss divergence
theorem. We obtain

∫∫

S(t)
n · σ · ds =

∫∫∫

V(t)
∇ · σ · dv (2.16)

Substituting 2.16 in 2.15, consolidating various terms, and
noting that because the volume of integration is arbitrary the
combined integrand must vanish, we obtain Cauchy’s differ-
ential equation governing the motion of an incompressible or
compressible fluid,

ρ
Du
Dt

= ∇ · σ + ρg (2.17)
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In index notation,

ρ
Dui

Dt
=

∂σij

∂xj
+ ρgi (2.18)

Eulerian Equation

Euler’s equation derives from the equation of motion 2.17 by
substituting the simplest possible constitutive equation for the
stress tensor corresponding to an ideal fluid, Considering the
individual components of the volume force to a pressure or
spherical stress tensor, we find

∇ · σ = −∇ · p (2.19)

The equation of motion then reduces to Euler’s equation

ρ
Du
Dt

= −∇ · p + ρg (2.20)

The associated Eulerian form is

ρ
(∂u

∂t
+ u · ∇u

)
= −∇ · p + ρg (2.21)

Irrotational flow

Expressing the velocity in terms of the gradient of the velocity
potential, ϕ, we find that Euler’s equation takes the simple form

ρ
(∂∇ϕ

∂t
+

1
2
∇u2) = −∇ · p + ρg (2.22)

The acceleration of gravity can be expressed as the gradient
of the scalar s

g = ∇s = ∇(g · x) = ∇(gxx + gyy + gzz) (2.23)
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Substituting this expression in 2.22, assuming that the density
is uniform throughout the domain of flow and collecting all terms
under the gradient, we find

∇
(

∂ϕ

∂t
+

1
2

u2 + ·p − ρgx
)
= 0 (2.24)

Since the spatial derivatives of the scalar quantity enclosed by
the parentheses on the left-hand side of 2.24 are zero, the quantity
must be independent of position although it may change in time.
Euler’s equation for rotational flow then reduces to Bernoulli’s
equation describing the irrotational flow of a uniform-density
fluid,

∂ϕ

∂t
+

1
2

u2 + p − ρgx = c(t) (2.25)

where c(t) is an unspecified function of time.

The Navier-Stokes equation

The Navier-Stokes equation follows from the equation of motion
2.17 by substituting the constitutive equation for the stress tensor
for a fluid with uniform viscosity, the hydrodynamic volume
force.

σ = −δij · p + µ

(
ϵ − 2

3
δij div v⃗

)

with δij being the unit tensor of Dirac, µ the dynamic viscos-
ity and ϵ the deformation tensor function of the field velocity
([Landau and Lifshitz(2013)]). An explicit form of τ can be ex-
pressed as

σij = −pi +
µ

2

(
∂ui

∂xj
+

∂uj

∂xi
− δik

2
3

∂uk
∂xk

)2
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Correspondingly, the equation of motion reduces to the Navier-
Stokes equation the following form.

ρ
Du
Dt

= −∇ · p + µ∇2u + ρg (2.26)

There is no analytical solution for Navier-Stokes with the
exception of basic examples. In other situations, a numerical
or experimental solution must be used. However, it must be
taken into account that the great mathematical difficulty of these
equations means that only very few solutions are known where
the convective terms interact quite generally with the friction
terms. However, known particular solutions, such as laminar
pipe flow well agree with the experimental results that there is
hardly any doubt about the general validity of the Navier–Stokes
equations. As a consequence of the Navier–Stokes equations,
an equation for the mechanical energy can be derived. If the
Navier–Stokes equation in the x direction is multiplied by u, the
one in the y direction by v and the one in the z direction by w,
and they are summed up, the energy equation for the mechanical
energy is found ([Schlichting and Kestin(1961)]).

Following the general protocol of methods based on the vor-
ticity transport equation, we compute the evolution of the flow
by advancing the vorticity field using the vorticity transport
equation for two-dimensional flow written in the form of an
evolution equation for the vorticity. In particular, if we applied
the Curl operator at Stokes equation we can obtain the following
formulation.

∂ω

∂t
= −∇× (u∇u) + ν∇2ω (2.27)

where ν ≡ µ/ρ is the kinematic viscosity.

∂ω

∂t
+ ω∇ · u = −u∇ · ω + ν∇2ω (2.28)
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in addiction, in the two dimensional plane x, y the times
ω × ω = ω ×∇× u = 0, so the Vortex Transportation equation
becomes (eq. 7.2),

∂ωz

∂t
= −u · ∇ωz + ν∇2ωz (2.29)

subject to appropriate derived boundary conditions for the
vorticity, while simultaneously obtaining the evolution of the
stream function by solving the Poisson equation.

∇2ψ = −ω (2.30)

2.5 energy equation

In order to set up the equation for the energy balance in a flow,
we consider a fluid particle of mass dM = ϱdV and volume dV =
dx · dy · dz in a Cartesian coordinate system and follow it on its
path in the flow. According to the first law of thermodynamics,
the gain in total energy DEt (the index t stands for total energy)
in unit time Dt is equal to the heat supplied to the mass element
Q̇Dt and the work done on the element Ẇ Dt. Therefore we
have:

DEt

Dt
= Q̇ + Ẇ (2.31)

Where DEt/Dt is the energy variation, Q̇ the heat flux and Ẇ the
power made by mechanical energy. The Q̇ term can be expressed
in the following way,

Q̇ = −dV div q⃗ (2.32)

where q⃗ represents a heat flux vector. The total energy Et gen-
erally consists of three parts: the internal energy e, the kinetic
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energy 1/2 dM · v2 and the potential energy ψ. The following
statement holds:

dEt = dV ϱ

(
e +

1
2

v⃗2 + ψ

)
(2.33)

Thus the substantial change of the total energy follows as

DEt

Dt
= dV ϱ

D
(
e + 1

2 v⃗2 + ψ
)

Dt
(2.34)

The total rate of work done on the mass element of volume dV is:

Ẇ = dV ∇(σv⃗) (2.35)

if we combine Eq. 2.31, 2.32, 2.33 and 2.34 we can obtain:

ϱ
D
(
e + 1

2 v⃗2 + ψ
)

Dt
= −∇q⃗ +∇

(
σ v⃗

)
(2.36)

Last we can write the heat flux q⃗ as

q⃗ = −λ ∇ T (2.37)

T corresponds to the scalar temperature field, λ to the heat
conduction coefficient and σ represents the stress tensor.

2.6 drag and lift force

It is known that external forces occur when an object is mov-
ing into a fluid. These are the drag, lift, and torque force
([Landau and Lifshitz(2013)]). They depend on the velocity U,
the density ρ, the relative contact surface S, and a constant num-
ber C, which can be called Drag CD, Lift CL, or Torque Cϕ Coeffi-
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cient. These coefficients can be calculated through the total force
in x or y direction, called respectively like FD and FL.

FD =
∫

γ
p · ex dγ +

∫

γ
τ · ex dγ (2.38)

FL =
∫

γ
p · ey dγ +

∫

γ
τ · ey dγ (2.39)

while the torque force is function of the radius vector r⃗ and can
be expressed as

Fϕ =
∫

γ
τ⃗ · r⃗ dγ (2.40)

nx and ny represent respectively the normal vector in the direction
along x and y while γ is the perimeter of immerse boundary
which is calculated by the Drag Coefficient. It can be a squared,
cylinder, or complex geometry.

The CD, CL are expressed in the following equation,

CD =
FD

ρU2SD

CL =
FL

ρU2SL

with SD and SL the projection surface of the object along the flow
direction or perpendicular to it. From the experimental results, it
is known that the CD varies with Reynolds Number Re. In the
case of a cylinder, it was observed that with a very small Reynolds
Re << 1 the drag is proportional to the linear dimension of the
body and to the velocity itself FD ∼ νρU. While for large Re, the
laminar boundary layer becomes unstable and then turbulent.
However, the whole boundary layer does not become turbulence,
only some part of it. Figure 3 gives experimentally obtained
graphs showing the drag coefficient as a function of the Reynolds
Number Re = Ud/ν for a cylinder with diameter d. For very
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body and to the velocity itself FD ∼ νρU. While for large Re, the
laminar boundary layer becomes unstable and then turbulent.
However, the whole boundary layer does not become turbulence,
only some part of it. Figure 3 gives experimentally obtained
graphs showing the drag coefficient as a function of the Reynolds
Number Re = Ud/ν for a cylinder with diameter d. For very

small Re the drag coefficient decreases according to CD = 24/Re
(Stokes formula). The decrease in CD continues more slowly as
far as Re ∼= 53, where CD reaches a minimum, beyond which it
increases somewhat. In the range of Reynolds number 2 × 104 to
2 × 105 the CD is almost constant ([Landau and Lifshitz(2013)]).

Figure 3: Experimental Plot of CD obtained by Wieselbe
([Baracu and Boşneagu(2019)]) for varying Reynolds number

It must be borne in mind that, for the high velocities at which
the drag crisis occurs, the compressibility of the fluid may begin
to have a noticeable effect. The parameter which characterizes
the extent of this effect is the Mach Number Ma = U/c, where c
is the velocity of sound. If Ma << 1, the fluid may be regarded
as incompressible. The experimental data indicate that the com-
pressibility has in general a stabilizing effect on the flow in the
laminar boundary layer. When Ma increases, it can be observed
an increment of the critical value of Re.






