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preface

The papers injcluded in this volume contain the contributions given by several participants to the 
International Conference on Topological Algebras and Applications (ICTAA2022) organized on 
line by the Department of Mathematics and Computer Science of Palermo University (Italy) in 
the period August 31 - September 2, 2022.
The conference was expected to be attended in presence but the aftermath of the COVID19 
pandemic and the general political situation suggested converting this event to an online meeting.
ICTAA2022 has been the thirteenth of a series begun in 1999 in Tartu (Estonia). The subjects 
covered in the conference were the traditional ones: Categories of Topological Algebras, 
Topological Rings, Topological Linear Spaces, Topological Modules, Topological Groups and 
Semigroups, Bornological Structures, Sheaf Theory, Bundle Theory, Topological K-theory, 
Operator algebras etc.
Thirty mathematicians, from thirteen countries, participated to the meeting and almost all 
presented the results of their recent research during the meeting.
We thank all participants and speakers for their cooperation in making of ICTAA2022 a successful 
event from the scientific point of view. 
Unfortunately, all the aspects of sociability that usually accompany a conference were missing, 
but this did not depend on the will of the organizers or on that one of the participants.
We hope that the next ICTAA will be a real occasion of meeting personally old and new colleagues 
and friends working in the field of Topological Algebras and Applications.
A special thank is due to Dr. Giuseppe Russo for his technical help which made possible the 
organization of ICTAA2022 on-line.

The Organizers
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The property of being a Segal topological algebra is
not always transitive

Mart Abel1

1 School of Digital Technologies, Tallinn University, Narva mnt 25, Room A-416, 10120 Tallinn,
Estonia; Institute of Mathematics and Statistics, University of Tartu, Narva mnt 18, Room 4078,

51009 Tartu, Estonia

E-mail(s): mabel@tlu.ee, mabel@ut.ee

Abstract

In [1] the question "Is the property of being a Segal topological algebra al-
ways transitive?" remained unanswered. In this paper we give the examples
of left, right and two-sided Segal topological algebras for which the transitivity
property does not hold, answering the question negatively.

Key words: Topological algebras; Segal topological algebras; matrix algebras; left
ideals; right ideals; two-sided ideals
MSC: Primary 46H05; Secondary 16D25, 46H10
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1 Introduction

All algebras in this paper are associative algebras over the field K, which may
stand for either the field R of real numbers or the field C of complex numbers. There
is no assumption of the existence of the unit in our algebras.

By a topological algebra we mean a topological vector space over K in which
there is defined a separately continuous multiplication, making the vector space an
algebra over K.
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Let us recall that a topological algebra (A, τA) is a left (right or two-sided) Segal
topological algebra in a topological algebra (B, τB) via an algebra homomorphism
f : A → B, if

1) clB(f(A)) = B, i.e., f(A) is dense in B;
2) τA ⊇ {f−1(U) : U ∈ τB}, i.e., f is continuous;
3) f(A) is a left (respectively, right or two-sided) ideal of B.
In what follows, a left (right or two-sided) Segal topological algebra will be denoted

shortly by a triple (A, f,B).
In this paper we give examples of the pairs (A, f,B) and (B, g, C) of left (right or

two-sided) Segal topological algebras such that (A, g ◦ f, C) is not a Segal topological
algebra. For that, we use some subalgebras of the algebra M3(K) of 3 by 3 matrices
with all elements from the field K.

2 Examples
Consider the following subsets of the algebra M3(K):

C =

⎧⎨
⎩

⎛
⎝

a b c
d e f
0 0 g

⎞
⎠ : a, b, c, d, e, f, g ∈ K

⎫⎬
⎭ ,

Bl =

⎧⎨
⎩

⎛
⎝

0 b c
0 e f
0 0 g

⎞
⎠ : b, c, e, f, g ∈ K

⎫⎬
⎭ ,

Br =

⎧⎨
⎩

⎛
⎝

0 0 0
d e f
0 0 g

⎞
⎠ : d, e, f, g ∈ K

⎫⎬
⎭ ,

Bt =

⎧⎨
⎩

⎛
⎝

0 0 c
0 0 f
0 0 0

⎞
⎠ : c, f ∈ K

⎫⎬
⎭ ,

A =

⎧⎨
⎩

⎛
⎝

0 0 c
0 0 0
0 0 0

⎞
⎠ : c ∈ K

⎫⎬
⎭ ,

Ar =

⎧
⎨
⎩

⎛
⎝

0 0 0
d 0 0
0 0 0

⎞
⎠ : d ∈ K

⎫
⎬
⎭ .

Then it is easy to check, that A,Ar, Bl, Br, Bt and C are all algebras over K with
respect to the usual matrix addition and matrix multiplication.

Moreover, Bl is a left ideal of C, Br is a right ideal of C and Bt is a two-sided
ideal of C, A is a left ideal of Bl and a two-sided ideal of Bt, Ar is a right ideal of Br.

M. Abel: Property of being a Segal topological algebra is not always transitive (pp. 1 – 4)
2



Boll. di mat. Pura ed appl. Vol. XI (2023)

Let us recall that a topological algebra (A, τA) is a left (right or two-sided) Segal
topological algebra in a topological algebra (B, τB) via an algebra homomorphism
f : A → B, if

1) clB(f(A)) = B, i.e., f(A) is dense in B;
2) τA ⊇ {f−1(U) : U ∈ τB}, i.e., f is continuous;
3) f(A) is a left (respectively, right or two-sided) ideal of B.
In what follows, a left (right or two-sided) Segal topological algebra will be denoted

shortly by a triple (A, f,B).
In this paper we give examples of the pairs (A, f,B) and (B, g, C) of left (right or

two-sided) Segal topological algebras such that (A, g ◦ f, C) is not a Segal topological
algebra. For that, we use some subalgebras of the algebra M3(K) of 3 by 3 matrices
with all elements from the field K.

2 Examples
Consider the following subsets of the algebra M3(K):

C =

⎧⎨
⎩

⎛
⎝

a b c
d e f
0 0 g

⎞
⎠ : a, b, c, d, e, f, g ∈ K

⎫⎬
⎭ ,

Bl =

⎧⎨
⎩

⎛
⎝

0 b c
0 e f
0 0 g

⎞
⎠ : b, c, e, f, g ∈ K

⎫⎬
⎭ ,

Br =

⎧⎨
⎩

⎛
⎝

0 0 0
d e f
0 0 g

⎞
⎠ : d, e, f, g ∈ K

⎫⎬
⎭ ,

Bt =

⎧⎨
⎩

⎛
⎝

0 0 c
0 0 f
0 0 0

⎞
⎠ : c, f ∈ K

⎫⎬
⎭ ,

A =

⎧⎨
⎩

⎛
⎝

0 0 c
0 0 0
0 0 0

⎞
⎠ : c ∈ K

⎫⎬
⎭ ,

Ar =

⎧
⎨
⎩

⎛
⎝

0 0 0
d 0 0
0 0 0

⎞
⎠ : d ∈ K

⎫
⎬
⎭ .

Then it is easy to check, that A,Ar, Bl, Br, Bt and C are all algebras over K with
respect to the usual matrix addition and matrix multiplication.

Moreover, Bl is a left ideal of C, Br is a right ideal of C and Bt is a two-sided
ideal of C, A is a left ideal of Bl and a two-sided ideal of Bt, Ar is a right ideal of Br.

M. Abel: Property of being a Segal topological algebra is not always transitive (pp. 1 – 4)
2

Boll. di mat. Pura ed appl. Vol. XI (2023)

Take

M =

⎛
⎝

1 0 0
1 0 0
0 0 0

⎞
⎠ , N =

⎛
⎝

1 1 0
0 0 0
0 0 0

⎞
⎠ ∈ C

and

P =

⎛
⎝

0 0 1
0 0 0
0 0 0

⎞
⎠ ∈ A, R =

⎛
⎝

0 0 0
1 0 0
0 0 0

⎞
⎠ ∈ Ar.

Then

MP =

⎛
⎝

0 0 1
0 0 1
0 0 0

⎞
⎠ �∈ A, RN =

⎛
⎝

0 0 0
1 1 0
0 0 0

⎞
⎠ �∈ Ar.

This means that A is not a left ideal of C (hence, A is also not a two-sided ideal of
C) and Ar is not a right ideal of C.

Equip C with the trivial topology τC = {∅, C} and Bl, Br, Bt, A,Ar with the re-
strictions of τC to the respective subsets of C. Then the topologies τBl

, τBr , τBt , τA and
τAr are also trivial topologies on respective algebras (hence, all algebraic operations
in these algebras are separately and jointly continuous) and we obtain topological al-
gebras (A, τA), (Ar, τAr

), (Bl, τBl
), (Br, τBr

), (Bt, τBt
) and (C, τC). As the topologies

on these topological algebras are trivial, then all nonempty subsets of these algebras
are dense and all maps between these algebras are continuous (in the trivial topology,
there are no more open sets than empty set and the whole algebra itself, hence there
are no more closed subsets than the empty set and the whole algebra itself).

Let 1C : C → C be the identity map, i.e., 1C(M) = M for every M ∈ C.
Set 1Bl

= 1C |Bl
: Bl → C, 1Br

= 1C |Br
: Br → C, 1Bt

= 1C |Bt
: Bt → C,

1l = 1Bl
|A : A → Bl, 1r = 1Br

|Ar
: Ar → Br, 1t = 1Bt

|A : A → Bt,
1A = 1C |A : A → C and 1Ar = 1C |Ar : Ar → C. Then 1A = 1Bl

◦ 1l = 1Bt ◦ 1t
and 1Ar = 1Br ◦ 1r. Moreover, all the maps 1A, 1Ar , 1Bl

, 1Br , 1Bt , 1l, 1r, 1t and 1C are
continuous algebra homomorphisms.

Now it is evident that (A, 1l, Bl), (Bl, 1Bl
, C) are left Segal topological algebras

but (A, 1Bl
◦ 1l, C) = (A, 1A, C) is not a left Segal topological algebra, because A is

not a left ideal of C.
Similarly (Ar, 1r, Br), (Br, 1Br , C) are right Segal topological algebras but

(Ar, 1Br
◦ 1r, C) = (Ar, 1Ar

, C) is not a right Segal topological algebra, because Ar is
not a right ideal of C.

Moreover, (A, 1t, Bt), (Bt, 1Bt
, C) are two-sided Segal topological algebras but

(A, 1Bt
◦ 1t, C) = (A, 1A, C) is not a two-sided Segal topological algebra because

A is not a two-sided ideal of C.

3 Conclusion
We have found examples of pairs (A, f,B), (B, g, C) of Segal topological algebras

in the left hand case, right hand case and two-sided case such that (A, g ◦ f, C) is

M. Abel: Property of being a Segal topological algebra is not always transitive (pp. 1 – 4)
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not a Segal topological algebra of the respective side. Hence, we can formulate the
following theorem without any further proof.

Theorem 1. None of the properties of being either a left Segal topological algebra,
a right Segal topological algebra or a two-sided Segal topological algebra is transitive,
in general.

Although these properties are not transitive, in general, there are several classes of
topological algebras for which the transitivity holds. For descriptions of the properties
on Segal topological algebras, that are sufficient for the transitivity of the property
of being a left (right or two-sided) Segal topological algebra, see [1], Theorem 1,
Corollaries 3–7, pp. 158–159.
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Abstract

Several structural properties of Waelbroeck algebras over K (one of the fields
R of real numbers or C of complex numbers) are given. One-sided Waelbroeck
algebras over K are introduced and studied. Three open problems are presented.

Key words: Topological algebra, Waelbroeck algebra, one-sided Waelbroeck al-
gebra, von Neumann bornology, idempotently pseudoconvex bornology, radius
of boundedness.
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1 Preface
One of the most important topological algebras over K, which has many similar

properties of Banach algebra is a Waelbroeck algebra.
The concept of a Waelbroeck algebra for locally convex unital algebras was intro-

duced by L. Waelbroeck in [9] under the name of „continuous inverse algebra”. The
name „Waelbroeck algebra” was first used by R. Ouzilou for locally convex unital al-
gebras in [8] and by A. Mallios for arbitrary topological unital algebras in [6]. Main
structural properties of (not necessarily locally convex) Waelbroeck algebras are given
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in the present paper and one-sided Waelbroeck algebras over K are introduced and
studied.

2 Introduction

Let K be one of the fields R of real numbers or C of complex numbers, A an algebra
over K, InvA the collection of all invertible elements of A and QinvA the collection
of all quasi-invertible elements of A (a ∈ A is quasi-invertble in A, if there exists an
element aq ∈ A such that a ◦ aq = a + aq − aaq = θA (the zero element of A) and
aq ◦ a = aq + a− aqa = θA).

1. A topological algebra (A, τ) over K is called a Q-algebra, if QinvA ∈ τ .
A Q-algebra over K, in which the quasi-inversion �q : a → aq is continuous, is
called a Waelbroeck algebra. In the particular case, when A is a unital algebra,
(A, τ) is called a Q-algebra, if InvA ∈ τ , and a Waelbroeck algebra, if InvA ∈ τ
and the inversion �−1 : a → a−1 in (A, τ) is continuous. For example, every Banach
algebra over K; every complete k-normed algebra over K with 0 < k � 1; every
F -algebra over K (that is, a topological algebra over K, whose topology is defined
by a submultiplicative F -norm) and several other well-known topological algebras are
Waelbroeck algebras.

It is known (by Proposition 16 in [10]) that the multiplication is jointly continuous
in every commutative Waelbroeck algebra over K.

2. Let (A, τ) be a topological algebra over C. For a given a ∈ A, let spA(a) be the
spectrum of a, ρA(a) the spectral radius of a,

S(a, λ) =
{(a

λ

)n

: n ∈ N
}

for each λ �= 0 and let βA(a) be the radius of boundedness of a, that is,

βA(a) = inf{λ > 0 : S(a, λ) is bounded in A}

and inf(∅) = ∞. An element a ∈ A is bounded, if βA(a) < ∞.
3. Let (A, τ) be a topological algebra over K, BA the von Neumann bornology on

(A, τ) (that is, the set of all bounded sets in (A, τ)),

Γk(U) =
{ n∑

v=1

λvuv : n ∈ N, u1 , . . . , un ∈ U , λ1 , . . . , λn ∈ K with

n∑
v=1

|λv |k � 1
}

for each k ∈ (0, 1] and U ⊂ A. The von Neumann bornology BA is called
a) convex, if Γ1(U) is bounded in (A, τ) for each bounded subset U of (A, τ);
b) pseudoconvex, if there exists k ∈ (0, 1] such that Γk(U) is bounded in (A, τ) for

each bounded subset U of (A, τ)
and
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c) idempotently pseudoconvex, if there exists k ∈ (0, 1] such that Γk(U) is bounded
in (A, τ) for each idempotent and bounded subset U of (A, τ).

Hence, the convex von Neumann bornology is pseudoconvex and the pseudoconvex
von Neumann bornology is idempotently pseudoconvex.

3 Main structural properties
First we give necessary and sufficient conditions for a topological algebra to be a

Waelbroeck algebra.

Theeorem 1. a) A topological algebra (A, τ) over K is a Waelbroeck algebra if
and only if

1) there exists a neighbourhood O of zero in (A, τ) such that O ⊂ QinvA
and

2) the quasi-inversion �q : a → aq in (A, τ) is continuous at θA.

b) A unital topological algebra (A, τ) over K is a Waelbroeck algebra if and only if
1’) there exists a neighbourhood O of eA in (A, τ) such that O ⊂ InvA

and
2’) the inversion �−1 : a → a−1 in (A, τ) is continuous at eA.

Proof. Let (A, τ) be a Waelbroeck algebra over K. Then (A, τ) has properties 1) and
2) and, in the unital case, the properties 1’) and 2’).

a) Let (A, τ) be a topological algebra over K, which has the property 1),
O ⊂ QinvA be a neighbourhood of zero in (A, τ) (defined by the condition 1)), fa the
map, defined by fa(b) = a+ b for each a, b ∈ A, ha the map, defined by ha(b) = ba for
each a, b ∈ A, i the identity map on A, Fa the map, defined by Fa(b) = b ◦ a for each
a, b ∈ A, and let a0 ∈ QinvA. Then Faq

0
(a0) = θA. Because Faq

0
= faq

0
◦ (i+ h−aq

0
) is

continuous as a composition of continuous maps, then there exists a neighbourhood
O(a0) of a0 in (A, τ) such that Faq

0
(O(a0)) ⊂ O. Thus, b ◦ aq0 ∈ QinvA for each

b ∈ O(a0). Since
b = b ◦ θA = b ◦ (aq0 ◦ a0) = (b ◦ aq0) ◦ a0

for each b ∈ O(a0), then

bq = ((b ◦ aq0) ◦ a0)q = aq0 ◦ (b ◦ aq0)q ∈ A

(because (a ◦ b)q = bq ◦ aq for each a, b ∈ QinvA) for each b ∈ O(a0). Hence
O(a0) ⊂ QinvA. Therefore, QinvA ∈ τ .

Let now (A, τ) has the property 2) and let a0 ∈ QinvA. Then

lim
b→θA

�q(b) = �q(θA) = θA,

Because the map f : A → A, defined by f(a) = a− aq0a for each a ∈ A, is continuous
and f(θA) = θA, then there exists a neighbourhood U of zero in (A, τ) such that

M. Abel: Waelbroeck algebras (pp. 5 – 14)
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f(U) ⊂ QinvA. Therefore (u− aq0u)
q exists for each u ∈ U . Let O(a0) = a0 + U and

a ∈ O(a0). Then a = a0 +u for some u ∈ U . Because (a0 +u)q = (u− aq0u)
q ◦ aq0 (see

[5], Proposition 1.1.31), then

lim
a→a0

�q(a) = lim
u→θA

(a0 + u)q = ( lim
u→θA

(u− aq0u)
q) ◦ aq0 = θA ◦ aq0 = aq0.

It means that �q is continuous at each a0 ∈ QinvA. Consequently, (A, τ) is a Wael-
broeck algebra over K.

b) Let (A, τ) be a unital topological algebra over K which have the properties (1’)
and (2’) and let a0 ∈ InvA. Then, there is a balanced neighbourhood O(eA) ⊂ InvA
of eA. Since O(eA) = eA +O for some balanced neighbourhood O of zero and

eA − a ∈ eA + (−O) ⊂ eA +O ⊂ InvA

for each a ∈ O, then
aq = eA − (eA − a)−1

exists in A. Hence, O ⊂ QinvA and

lim
a→θA

�q(a) = eA − lim
a→θA

�−1(eA − a) = θA.

So, by the part a) of this proof, QinvA ∈ τ and the quasi-inversion in (A, τ) is contin-
uous at every a ∈ QinvA. Therefore InvA ∈ τ , because feA ◦g−1 is a homeomorphism
from QinvA onto InvA (here g−1 is the map, defined by g−1(a) = −a for each a ∈ A)
and InvA = eA − QinvA = (feA ◦ g−1)(QinvA). Since, eA − a ∈ QinvA for each
a ∈ InvA, then

lim
a→a0

�−1(a) = eA − lim
a→a0

�q(eA − a) = eA − �q(eA − a0) = �−1(a0)

(because a−1 = eA − (eA − a)q for each a ∈ InvA). Hence, the inversion �−1 is
continuous at a0. Consequently, (A, τ) is a unital Waelbroeck algebra over K.

The next result gives main structural properties of Waelbroeck algebras.

Theorem 2. The following statements are true:
a) if (A, τ) is a Waelbroeck algebra over K, (B, τ �) a topological algebra over K

and ϕ : A → B a continuous and open surjective homomorphism, then (B, τ �) is a
Waelbroeck algebra over K;

b) if (A, τ) is a Waelbroeck algebra over K and I a two-sided ideal in A, then the
quotient algebra A/I in the quotient topology is a Waelbroeck algebra over K;

c) if A is a finite direct product of Waelbroeck algebras (Ai, τi) over K, then A is
a Waelbroeck algebra over K in the product topology;

d) (A, τ) is a Waelbroeck algebra over K if and only if the unitization AK of A is
a Waelbroeck algebra over K in the product topology;

M. Abel: Waelbroeck algebras (pp. 5 – 14)
8



Boll. di mat. Pura ed appl. Vol. XI (2023)

f(U) ⊂ QinvA. Therefore (u− aq0u)
q exists for each u ∈ U . Let O(a0) = a0 + U and

a ∈ O(a0). Then a = a0 +u for some u ∈ U . Because (a0 +u)q = (u− aq0u)
q ◦ aq0 (see

[5], Proposition 1.1.31), then

lim
a→a0

�q(a) = lim
u→θA

(a0 + u)q = ( lim
u→θA

(u− aq0u)
q) ◦ aq0 = θA ◦ aq0 = aq0.

It means that �q is continuous at each a0 ∈ QinvA. Consequently, (A, τ) is a Wael-
broeck algebra over K.

b) Let (A, τ) be a unital topological algebra over K which have the properties (1’)
and (2’) and let a0 ∈ InvA. Then, there is a balanced neighbourhood O(eA) ⊂ InvA
of eA. Since O(eA) = eA +O for some balanced neighbourhood O of zero and

eA − a ∈ eA + (−O) ⊂ eA +O ⊂ InvA

for each a ∈ O, then
aq = eA − (eA − a)−1

exists in A. Hence, O ⊂ QinvA and

lim
a→θA

�q(a) = eA − lim
a→θA

�−1(eA − a) = θA.

So, by the part a) of this proof, QinvA ∈ τ and the quasi-inversion in (A, τ) is contin-
uous at every a ∈ QinvA. Therefore InvA ∈ τ , because feA ◦g−1 is a homeomorphism
from QinvA onto InvA (here g−1 is the map, defined by g−1(a) = −a for each a ∈ A)
and InvA = eA − QinvA = (feA ◦ g−1)(QinvA). Since, eA − a ∈ QinvA for each
a ∈ InvA, then

lim
a→a0

�−1(a) = eA − lim
a→a0

�q(eA − a) = eA − �q(eA − a0) = �−1(a0)

(because a−1 = eA − (eA − a)q for each a ∈ InvA). Hence, the inversion �−1 is
continuous at a0. Consequently, (A, τ) is a unital Waelbroeck algebra over K.

The next result gives main structural properties of Waelbroeck algebras.

Theorem 2. The following statements are true:
a) if (A, τ) is a Waelbroeck algebra over K, (B, τ �) a topological algebra over K

and ϕ : A → B a continuous and open surjective homomorphism, then (B, τ �) is a
Waelbroeck algebra over K;

b) if (A, τ) is a Waelbroeck algebra over K and I a two-sided ideal in A, then the
quotient algebra A/I in the quotient topology is a Waelbroeck algebra over K;

c) if A is a finite direct product of Waelbroeck algebras (Ai, τi) over K, then A is
a Waelbroeck algebra over K in the product topology;

d) (A, τ) is a Waelbroeck algebra over K if and only if the unitization AK of A is
a Waelbroeck algebra over K in the product topology;

M. Abel: Waelbroeck algebras (pp. 5 – 14)
8

Boll. di mat. Pura ed appl. Vol. XI (2023)

e) if (A, τ) is a Hausdorff Waelbroeck algebra over K, B is a closed subalgebra
of (A, τ) and βA(a) � ρA(a) for each a ∈ A, then (in the subspace topology) B is a
Waelbroeck algebra over K
and

f) if (A, τ) is a unital Waelbroeck algebra over C for which the topological dual
space of A has a non-zero element and, for any a ∈ A, there exists a neighbourhood
O of zero in C such that for some λ ∈ O from the weak boundedness of the set
{(λa)n : n ∈ N} follows the boundedness of this set in (A, τ), then all elements of A
are bounded.

Proof. a) Let (A, τ) be a Waelbroeck algebra over K, (B, τ ′) a topological algebra
over K and ϕ : A → B a continuous and open surjective homomorphism. Then
ϕ(QinvA) ⊂ QinvB because ϕ(a)q = ϕ(aq) for each a ∈ QinvA, ϕ is a homomorphism
and ϕ(θA) = θB . Since QinvA is an open set in (A, τ) and ϕ is an open surjective map,
then ϕ(QinvA) is an open set in (B, τ ′). Hence, ϕ(QinvA) is a neighbourhood of θB
in (B, τ). So, there exists a neighbourhood O of zero in (B, τ) such that O ⊂ QinvB.

To show that the quasi-inversion �q in (B, τ ′) is continuous at θB , let O be an
arbitrary neighbourhood of zero in QinvB. Then there is a neighbourhood OB of zero
in (B, τ ′) such that O = OB∩QinvB in the subset topology. Because ϕ is continuous,
then there exists a neighbourhood OA of zero in (A, τ) such that ϕ(OA) ⊂ OB . Hence,
OA ∩ QinvA is a neighbourhood of zero in QinvA in the subset topology. Since the
quasi-inversion �q is continuous at θA, there exists an open neighbourhood O′

A of zero
in (A, τ) such that

�q(O′
A ∩QinvA) ⊂ OA ∩QinvA.

Let O′
B = ϕ(O′

A ∩QinvA). Then O′
B is an open neighbourhood of zero in (B, τ ′)

due to the openness of QinvA and the openness of ϕ. Because

O′
B ⊂ ϕ(O′

A) ∩ ϕ(QinvA) ⊂ ϕ(QinvA) ⊂ QinvB,

then O′
B is a neighbourhood of zero in QinvB. Moreover,

�q(O′
B) = �q(ϕ(O′

A∩QinvA)) = ϕ(�q(O′
A∩QinvA)) ⊂ ϕ(OA∩QinvA) ⊂ OB∩QinvB.

Therefore the quasi-inversion �q is continuous at θB . Consequently, (B, τ ′) is a Wael-
broeck algebra over K, by Theorem 1.

b) Let (A, τ) be a Waelbroeck algebra over K, I a two-sided ideal in A and
πI : A → A/I the quotient map. Then A/I (in the quotient topology) is a topo-
logical algebra over K with respect to the usual algebraic operations in A/I. Since πI

is a continuous and open surjective homomorphism in the quotient topology on A/I,
then A/I (in the quotient topology) is a Waelbroeck algebra over K, by the statement
a) above.

c) Let n ∈ N, (A1, τ1), . . . , (An, τn) be Waelbroeck algebras over K and
A =

∏n
i=1 Ai the direct product of algebras Ai. If we define the algebraic oper-

ations in A point-wise, then A (in the product topology) is a topological algebra
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over K. It is easy to see that

QinvA =
n∏

i=1

QinvAi.

Because every (Ai, τi) is a Waelbroeck algebra, then there exists a neighbourhood Oi

of θAi
in (Ai, τi) such that Oi ⊂ QinvAi for each i ∈ Nn. Therefore,

θA = (θA1 , . . . , θAn) ∈ O =

n∏
i=1

Oi ⊂
n∏

i=1

QinvAi = QinvA.

In the product topology, the set O is a neighbourhood of zero. So, we have shown
that there exists a neighbourhood O of zero in A (in the product topology) such that
O ⊂ QinvA.

To show that the quasi-inversion �q in A is continuous at θA in the product topol-
ogy, let O be any neighbourhood of zero in A in the product topology. Then, there
exist neighbourhoods Oi of zero in (Ai, τi) such that

∏n
i=1 Oi ⊂ O. Since the quasi-

inversion �qi in every (Ai, τi) is continuous at θAi
, then, for each i, there exists a

neighbourhood Ui of zero in (Ai, τi) such that �qi (Ui) ⊂ Oi. Therefore,

�q
( n∏

i=1

Ui

)
=

n∏
i=1

�qi (Ui) ⊂
n∏

i=1

Oi ⊂ O.

Because
∏n

i=1 Ui is a neighbourhood of zero in A in the product topology, then the
quasi-inversion �q in A is continuous at θA. So, by Theorem 1, the finite direct product
of Waelbroeck algebras over K is a Waelbroeck algebra over K.

d) Let (A, τ) be a Waelbroeck algebra over K. Then (A, τ) is a Q-algebra. There-
fore, AK is a Q-algebra in the product topology (see [1], Proposition 2). Since AK (in
the product topology) is a topological algebra over K, then the map

F : A× (K \ {0}) → A,

defined by F ((a, λ)) = λa for each (a, λ) ∈ A × (K \ {0}), is jointly continuous
and F ((θA, 1)) = θA. Hence, there exists a neighbourhood O of (θA, 1) in AK (in the
product topology) such that F (O) ⊂ QinvA. Moreover, there exists an element U×V
in a base of neighbourhoods of (θA, 1) in the product topology, where U is a neigh-
bourhood of zero in (A, τ) (we can assume here that U is a balanced neighbourhood
of zero, otherwise we take the balanced neighbourhood of zero U � ⊂ U instead of U)
and V a neighbourhood of 1 in K such that U × V ⊂ O and UV ⊂ QinvA. Let
W = {λ ∈ K : 1

λ ∈ V }. Because the inversion in K is continuous, then W is a neigh-
bourhood of 1 in K and − 1

λa ∈ V U whenever λ ∈ W and a ∈ U . The convergence in
AK in the product topology is the convergence by coordinates and

(a, λ)−1 =
(
− 1

λ

(
− 1

λ
a
)q

,
1

λ

)
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for each (λ, a) ∈ InvAK. Let Δ be the map, which is defined by Δ(a, λ) = (a, λ)−1

for each (a, λ) ∈ InvAK. Since

lim
(a,λ)→(θA,1)

Δ((a, λ)) =
(
− 1

λ
lim

a→θA
�q
(
− 1

λ
a
)
, lim
λ→1

1

λ

)
=

(
− 1

λ
θA, 1

)
= (θA, 1)

in U ×W , then the inversion in AK (in the product topology) is continuous at (θA, 1).
Hence, by the Theorem 1, AK (in the product topology) is a unital Waelbroeck algebra
over K.

Let now AK (in the product topology) be a Waelbroeck algebra over K. Then AK
is a Q-algebra and the inversion in AK is continuous at (θA, 1). Therefore, there exists
a neighbourhood O of (θA, 1) such that O ⊂ InvAK and

lim
(a,λ)→(θA,1)

Δ((a, λ)) = Δ((θA, 1)) = (θA, 1).

Now (similarly as above), there exists a balanced neighbourhood U of zero in (A, τ)
and a neighbourhood V of 1 in K such that such U × V ⊂ O. Since (−a, 1) ∈ U × V
for each a ∈ U , then (−a, 1)−1 exists. Because (−a, 1)−1 = (−aq, 1) ∈ AK, then
U ⊂ QinvA and

lim
a→θA

aq = −p( lim
(−a,1)→(θA,1)

(Δ((−a, 1))) = −p((θA, 1)) = θA

(here p denotes the projection of AK onto A, which is continuous). Hence, the
quasi-inversion �q in (A, τ) is continuous at θA. So, (A, τ) satisfies the conditions
1’) and 2’) of Theorem 1, because of which (A, τ) is a Waelbroeck algebra over K, by
Theorem 1.

e) See the proof of Theorem 1 in [2].
f) See [3], pp. 63–64.

Corollary 1. Let (A, τ) be a Hausdorff Waelbroeck algebra over C with jointly
continuous multiplication and idempotently pseudoconvex von Neumann bornology. If
every element of QinvA is bounded, then every closed subalgebra of (A, τ) (in the
subset topology) is a Waelbroeck algebra.

Proof. By assumption, it is true that βA(a) � ρA(a) for each a ∈ A, by Proposition
4 in [2]. Therefore, every closed subalgebra B of (A, τ) (in the subset topology) is a
Waelbroeck algebra, by the statement e) of Theorem 2.

Corollary 2. Let (A, τ) be a Hausdorff locally convex Waelbroeck algebra over C
with jointly continuous multiplication. Then every closed subalgebra B of (A, τ) (in
the subset topology) is a Waelbroeck algebra.

Proof. See the proof of Corollary 4 in [2] (in the unital case, see the proof of Propo-
sition 1.7 in [5]).
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Corollary 3. Every element of any Hausdorff locally convex Waelbroeck algebra
over C is bounded.

Proof. For the unital case, see [3], p. 64. Let A be a non-unital algebra over C and
AC the unitization of A. Then AC (in the product topology) is a unital Waelbroeck
algebra over C, by the statement d) of Theorem 2. Moreover, AC is a Hausdorff
locally convex space. Therefore, every element in AC is bounded by the first part of
the proof. Hence, there exists λ0 ∈ R such that the set

V =

{(
(a, 0)

λ0

)n

: n ∈ N

}

is bounded in AC. Let OA be any neighbourhood of zero in (A, τ) and O a neigh-
bourhood of zero in C. Then OA×O is a neighbourhood of zero in AC in the product
topology. Thus, there is M > 0 such that V ⊂ M(OA ×O). Because

(
(a, 0)

λ0

)n

=
(( a

λ0

)n

, 0
)

for each n ∈ N, then {( a

λ0

)n

: n ∈ N
}
⊂ MOA.

Hence, every element in A is bounded.

4 One-sided Waelbroeck algebras

Let A be an algebra over K, InvlA the collection of all left invertible elements in A
and QinvlA the collection of all left quasi-invertible elements of A (a ∈ A is left quasi-
invertble in A, if there exists an element aql ∈ A such that aql ◦a = aql +a−aql a = θA).
Similarly, let InvrA the collection of all right invertible elements in A and QinvrA the
collection of all right quasi-invertible elements of A.

We say that a topological algebra (A, τ) over K is a Ql-algebra, if Qinvl ∈ τ , and
a left Waelbroeck algebra, if (A, τ) is a Ql-algebra, in which the left quasi-inversion
�ql : a → aql is continuous. In the particular case, when A is a unital algebra, we say
that (A, τ) is a Ql-algebra, if InvlA ∈ τ , and a left Waelbroeck algebra, if (A, τ) is
a Ql-algebra, in which the left inversion �−1

l : a → a−1
l is continuous. Similarly, we

define a Qr-algebra and a right Waelbroeck algebra over K.

Theeorem 3. a) A topological algebra (A, τ) over K is a left (right) Waelbroeck
algebra if and only if

1) there exists a neighbourhood O of zero in (A, τ) such that O ⊂ QinvlA (respec-
tively, O ⊂ QinvrA)
and
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2) the left quasi-inversion �ql : a → aql (respectively, the right quasi-inversion
�qr : a → aqr) in (A, τ) is continuous at θA.

b) A unital topological algebra (A, τ) over K is a left Waelbroeck algebra (right
Waelbroeck algebra) if and only if

1’) there exists a neighbourhood O of eA in (A, τ) such that O ⊂ InvlA (respec-
tively, O ⊂ InvrA)
and

2’) the left inversion �−1
l : a → a−1

l (respectively, the right inversion �−1
r : a → a−1

r )
in (A, τ) is continuous at eA.

Proof. The proof is similar to the proof of Theorem 1.

We can also show that the analogue of Theorem 2 holds for one-sided Waelbroeck
algebras.

Up to now, I don’t know of any example of a left Waelbroeck algebra that is not
a right Waelbroeck algebra. Therefore, I present the following open problems:

1. Does there exist a left Waelbroeck algebra over K, which is not a right Wael-
broeck algebras or vice versa?

2. Does there exist a topological algebra over K, in which only one of the sets
QinvlA or QinvrA (in the unital case, only one of the sets InvlA or InvrA) is open?

3. Does there exist a topological algebra over K, in which the left quasi-inversion
(in the unital case, the left inversion) is continuous but the right quasi-inversion
(respectively, the right inversion) is not continuous or vice versa.

Remark. In special cases, some of the results, presented here, are known: Theo-
rem 1 for unital Waelbroeck algebras can be found in [6], Proposition 4.1, and partly
in [7], p. 204; the statements a), b) and d) of Theorem 2 for Waelbroeck algebras
over K with jointly continuous multiplication - in [4] (see Lemma 3.6.26, Corollary
3.6.27 and Proposition 3.6.28) and Theorem 3 for unital Waelbroeck algebras has been
partly given (without proof) in [7], p. 205.

5 Conclusion

Several structural properties of Waelbroeck algebras over K are presented. One-
sided Waelbroeck algebras over K are introduced and some properties of them are
given. Three open problems are presented.
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Abstract

We summarize in this note a series of basic concepts of the theory of locally
convex quasi *-algebras and we propose some possible approach to the notion of
bounded element which has revealed to be relevant as starting point of a spectral
analysis.
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1 Introduction and Basic definitions

The theory of (locally convex) quasi *-algebras begun by Lassner [11, 12] in the
1980’s, has reached a quite satisfactory status of richness and completeness: several
aspects have been investigated and several applications have been considered. The
aim of this note is to propose some ideas on a possible different approach to the notion
of bounded element of a locally convex quasi *-algebra which requires the existence of
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