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Introduction

Introduction

The theory of dynamical systems is the mathematical study of the long-term behav-
ior of evolving systems, understood as maps acting on certain spaces. It originated at
the end of the 19th century and, as is often the case in mathematics, its roots must be
sought in the attempts to explain various concrete phenomena (like, citing one of the
most famous, the evolution of the solar system), and to predict their behavior. Growing
from a multitude of different roots, this theory has become over time a rich field inter-
acting with numerous and different branches of mathematics and, in general, sciences.
From the concrete context in which it developed, the theory of dynamical systems in-
herits one of its most important terms: the evolving states of a system, given by the
iterations of a map on a certain space, are referred to as an orbit by analogy to the solar
system. Properties of orbits like periodicity, chaotic behaviors, stability under perturba-
tions, appear repeatedly in the study of dynamical systems, making the concept of orbit
a fundamental of this theory. In its early stage, the theory of dynamical systems focused
mainly on non-linear systems (i.e., systems generated by non-linear maps), considered
more suitable, than the linear ones, to possess strange behaviors and therefore more in-
triguing from a dynamical point of view. A decisive step in the opposite direction was
made in the first half of the 20th century, when studies showed that even linear systems
can behave unpredictably, leading to the birth of the so called linear dynamics.

This thesis aims at studying the behavior of dynamical systems generated by linear
operators. The fundamentals of linear dynamics are investigated first in a general con-
text and, then, in the specific setting of a class of versatile linear operators that has had
an explosion of interest in the last decades: the composition operators T : ¢ — @ o f.
Precisely, the thesis is organized into five chapters, each of them preceded by a brief
introduction on the covered subject.

Chapter 1 introduces linear dynamical systems and provides all the background nec-
essary for a better understanding of the whole thesis. It is a walk through the most
important notions of linear dynamics, among which hypercyclicity, topological mix-
ing, expansivity, shadowing, hyperbolicity, generalized hyperbolicity and, in particu-
lar, chaos. In the last decades, the term chaos has been applied to a variety of linear
systems that exhibit some type of strange or random behaviors. This variety of ap-
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Introduction

proaches precludes a unique definition of the word “chaos”, giving rise to a multitude
of notions, such as Devaney chaos and Li-Yorke chaos, just to cite some of them, both
analyzed in the chapter and, in general, in this thesis. Moreover, the chapter deals with
a well-known equivalence relation among dynamical systems: the conjugacy, essential
in order to classify the behavior of dynamical systems. This relation, together with the
weaker semi-conjugacy, is presented in the last part of the chapter, where new results,
about properties preserved by semi-conjugation, are showed.

In Chapter 2, the notions introduced in the first chapter are brought into the more
specific context of composition dynamical systems, i.e., systems generated by composi-
tion operators acting on L spaces, 1 < p < co. First, the motivations that inspired this
research are introduced. While studying the behavior of a dynamical system, it may be
convenient to look for a conjugacy or semi-conjugacy with a better-understood system:
this explains why the chapter opens with weighted shifts, known to be a good model for
understanding the dynamics of various operators, among which composition operators.
Then, the general picture of composition operators and, therefore, composition dynam-
ical systems, is analyzed and widened by adding some new characterizations, like that
of expansivity, to the already known ones. It turns out that hypercyclicity, topological
mixing, Li-Yorke chaos and expansivity are completely understood in this context.

Unfortunately, the same cannot be said about chaos, frequent hypercyclicity, shad-
owing and generalized hyperbolicity: they are not easy to understand in the general
context of composition dynamical systems. Although no characterization of these prop-
erties is known in such context, recently, it has been proved that chaos and frequent hy-
percyclicity coincide for a large class of these systems: the dissipative composition dy-
namical systems of bounded distortion. This motivates the contents of Chapter 3, which
opens with a detailed description of the notions of dissipativity and bounded distortion.
Then, among other results, necessary and sufficient conditions to get the shadowing
property and generalized hyperbolicity are investigated in the chapter. These new con-
ditions show that the two concepts are more than connected: they even coincide in
the context of dissipative composition dynamical systems of bounded distortion. The
analysis of the chapter is concluded with the presentation of elegant and useful compu-
tational tools: using them, it is shown how some natural probability distributions, such
as the Laplace distribution and the Cauchy distribution, lead to composition operators,
of dissipative systems of bounded distortion, with and without the shadowing property.

At this point of the thesis, after a careful look at the results of chapters 2 and 3, it
should have become clear to the reader the intimate relation between weighted shifts
and composition operators of dissipative systems of bounded distortion. Chapter 4
deals with a detailed description of this connection: after a brief introduction on the
motivations leading to this research, it is here proved a clou theorem developing a new
general method which takes a known characterization of a linear dynamical property
for weighted shifts and translates it into the setting of composition operators of dissi-
pative systems of bounded distortion. Finally, several examples are treated in detail,
in conclusion of the extensive analysis of the previous chapters about the dynamics of
composition dynamical systems, both in the general and in the dissipative case.

The last chapter of the thesis, Chapter 5, differs slightly from the above topics. It
gives a brief overview on basic properties of composition operators on various function
spaces different from the L” spaces considered so far. In addition to the linear composi-
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Introduction

tion operator, unlike the other chapters, a type of non-linear composition operator is also
introduced and studied here. The chapter is mainly centred on the following problem:
find necessary and sufficient conditions for a composition operator to map a function
space into itself. In this direction, many already known results are recalled, and new
ones are described, contributing to a theory which is still far from being complete. The
theory does not seem to run parallel for the two types of composition operators and,
even in the linear case, the previous problem turns out to be, sometimes, quite difficult.

From this outline, it is evident that the goal of the thesis is not only to show new
results in the theory of dynamical systems (and, expecially, linear dynamics) but, also,
to provide an accurate global view on the subject. For this reason, the theory illustrated
in the entire thesis is enriched by graphs, diagrams, examples and tables. Precisely, the
tables (in the second and third chapter) provide a scheme of all the known character-
izations, of the above mentioned properties, for composition dynamical systems, both
in the general case and in the dissipative case with bounded distortion. In this way, the
reader has a general picture of what is known, and what is still open, in the literature
on the topic.



Notation and Terminology

Notation and Terminology

Some recurrent terminology and notation in the thesis:
N denotes the set of all positive integers and No = N U {0};

* D and T denote, respectively, the open unit disk and the unit circle in the complex
plane C;

* given a Banach space X, Sx = {# € X : |z|| = 1}, i.e., Sx denotes the unit
sphere of X, and Bx(xz,r) denotes the open ball of radius r > 0 centered at
r € X;

if T is a bounded operator on X, then o(T'), 0,(T'), 0,(T') and o, (T") denote, re-
spectively, the spectrum, the point spectrum, the approximate point spectrum and
the residual spectrum of T, and r(T') denotes the spectral radius of T (recall the
spectral radius formula: v(T) = nlgl@lQHT”H% [400);

orbit is used for the T-orbit of x € X, given by Orb(z,T) = {T"(x), n > 0},
when T is understood.

Other notations used in the thesis (for example, to shorten formulas in some results
or to facilitate the fluidity of a paragraph) will be introduced directly in the chapters in
which they appear.
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Chapter 1. Linear dynamics

CHAPTER

Linear dynamics

The restriction of interesting dynamical behaviors to non-linear operators is quite
common inside and outside mathematics: typically, the analysis of particular non-linear
operators can realistically describe the evolution of certain natural, social or economic
phenomena. Nevertheless, in the last decades, this view turned out to be inappropriately
limited: also linear operators can exhibit very complex dynamics like, for instance,
linear chaos. The area of mathematics mainly implicated in the study of the behavior
of iterates of linear operators is called linear dynamics. A systematic study of linear
dynamics has probably begun in 1982 with the PhD thesis of Kitai [47], and it finds
its basis in the papers [36, 38] by the mathematicians Gethner, Godefroy and Shapiro.
Since then, an extensive literature has been produced (for instance [11, 16, 17,20, 22,
25,37] and their references) showing that even linear dynamics can exhibit the same
complexity and charm as non-linear dynamics. Comprehensive collections of recent
results on this topic are the monographs [10,40].

This chapter introduces the fundamentals of linear dynamics and, as this branch of
mathematics lies in the intersection between operator theory and dynamical systems,
the notions are presented in the context of linear operators first and in that of dynamical
systems then. The setting is that of Banach spaces, but most of the results showed in the
chapter can be extended to more general spaces, like Fréchet spaces [40]. Hence, unless
otherwise stated, throughout the chapter, X denotes a Banach space, and an operator
T on X means a bounded linear operator 7" : X — X. In addition, it should be noted
that definitions are sometimes accompanied by figures, which must be considered as
support for the understanding of a given phenomenon, and not as its precise graphic
description.



Chapter 1. Linear dynamics

1.1 Definitions and background results

For the sake of clarity and fluency of the thesis, in this section, only the notions
and the results which are used in other chapters are introduced. For a more accurate
analysis of each notion and for further results on the topics, please refer to the references
gradually provided in the entire section.

1.1.1 Types of chaos
Definition 1.1.1. The operator T is said to be

« topologically transitive if for any pair of non-empty open subsets U, V of X, there
is k € N such that T*(U) NV # (;

« topologically mixing if for any pair of non-empty open subsets U, V of X, there

is ko € N such that T*(U) NV # 0, for all k > k.

Opgd Opot
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Figure 1.1: Topological transitivity Figure 1.2: Topological mixing

Of course, topological mixing is a stronger form of topological transitivity, where
topological transitivity simply means that the space X is irreducible under the action
of T', i.e., any two non-trivial portions of X are always connected by 7. Topological
transitivity is, in linear dynamics, the first characteristic of an operator to be chaotic
(according to Devaney): combining it with the properties to admit many points whose
orbit has a regular behavior and to have a sensitive dependence on initial conditions,
one can get the definition of Devaney chaos [30]. Such “sensitivity” on initial condi-
tions means that small variations on the points of the space can bring large variations
(and, therefore, unpredictability) on the relative orbits. Successively, it was showed by
Banks et al. [6] that, in the Devaney’s definition of chaos, sensitivity is superfluous as
implicated by the other two ingredients.

Although the word “chaos” refers, in the literature, to Devaney’s definition, there
exist also other types of chaos, such as the one originally given by Li and Yorke in [52].

Definition 1.1.2. The operator T is said to be
« chaotic if it is topologically transitive and has a dense set of periodic points;

« Li-Yorke chaotic if there is an uncountable set U C X, called scrambled set, such
that for each x,y € U, x # y,

lim [[77(2) ~ T"(y)]| = 0 and Tt [|7%(2) = T"(y)]| > 0.
n—o0

n—00

The pair {x,y} is called a Li-Yorke pair.
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Figure 1.3: Chaos Figure 1.4: Li-Yorke pair

In the previous definition, the scrambled set can be thought of as a set where the
orbits of any two distinct points become both arbitrarily close and sufficiently distant
from each other. The following relation between Li-Yorke chaos, iterates of an operator
and its spectrum, is investigated, among other results, in [14].

Corollary 1.1.3. [14, Corollary 6] If T is Li-Yorke chaotic, then o(T)N'T # () and T™
is Li-Yorke chaotic, for each n € N.

In the same article, it is showed that Li-Yorke chaos is equivalent to the property of
T to admit an irregular vector, that is, a vector x € X such that

lim |7"(z)|| =0 and Tim ||7"(z)]| = cc.
n—o0

n—00

The origin of such vectors can be found in [13] and, surprisingly, it turns out that
initially this concept of irregularity was not linked to Li-Yorke chaos. Since an irregular
vector has an unbounded orbit and a subsequence converging to zero, the following
property is showed in [16].

Proposition 1.1.4. [16, Propositions 3 and 5] The following statements hold.

(i) The set of all x € X such that {T"(x) }nen has a subsequence converging to zero
isa G setin X.

(ii) If T has a vector of unbounded orbit, then T has a residual set of vectors with
unbounded orbits.

The previous proposition allows to highlight the already known connection between
Li-Yorke chaos and irregular vectors, as the following result shows.

Proposition 1.1.5. If T is Li-Yorke chaotic, then there exists a closed subset Y of X
such that

- Y is T-invariant, that is T(Y) C Y,

- the restriction of T to Y, ie. Ty, has a residual, and therefore dense, set of
irregular vectors.

Proof. As T is Li-Yorke chaotic, then it admits an irregular vector x € X. Define

&
Y = span{Orb(z,T)} = {Z aT™(x):a; € Ryn; e Nk € N}.

i=1





